837 research outputs found

    Evidence for Color Fluctuations in Hadrons from Coherent Nuclear Diffraction}

    Full text link
    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections σdiff\sigma_{diff} for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with few% \le few \% contribution from small size configurations. The computed values of σdiff\sigma_{diff} are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.Comment: Report number DOE/ER 40427-13-N93 11 pages, 3 figures available from author Mille

    When is an alternative possibility robust?

    Get PDF
    According to some, free will requires alternative possibilities. But not any old alternative possibility will do. Sometimes, being able to bring about an alternative does not bestow any control on an agent. In order to bestow control, and so be directly relevant qua alternative to grounding the agent's moral responsibility, alternatives need to be robust. Here, I investigate the nature of robust alternatives. I argue that Derk Pereboom's latest robustness criterion is too strong, and I suggest a different criterion based on the idea that what agents need to be able to do is keep open the possibility of securing their blamelessness, rather than needing to directly ensure their own blamelessness at the time of decision

    J/\Psi production, χ\chi polarization and Color Fluctuations

    Full text link
    The hard contributions to the heavy quarkonium-nucleon cross sections are calculated based on the QCD factorization theorem and the nonrelativistic quarkonium model. We evaluate the nonperturbative part of these cross sections which dominates at sNN20\sqrt{s_{NN}}\approx 20 GeV at the Cern Super Proton Synchrotron (SPS) and becomes a correction at sNN6\sqrt{s_{NN}}\approx 6 TeV at the CERN Large Hadron Collider (LHC). \J production at the CERN SPS is well described by hard QCD, when the larger absorption cross sections of the χ\chi states predicted by QCD are taken into account. We predict an AA-dependent polarization of the χ\chi states. The expansion of small wave packets is discussed.Comment: 13 pages REVTEX, 1 table, 2 PostScript, corrected some typo

    Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2

    Full text link
    High momentum transfer electrodisintegration of polarized and unpolarized deuterium targets, d(e,ep)nd(e,e'p)n is studied. We show that the importance of final state interactions-FSI, occuring when a knocked out nucleon interacts with the other nucleon, depends strongly on the momentum of the spectator nucleon. In particular, these FSI occur when the essential contributions to the scattering amplitude arise from internucleon distances 1.5 fm\sim 1.5~fm. But the absorption of the high momentum γ\gamma^* may produce a point like configuration, which evolves with time. In this case, the final state interactions probe the point like configuration at the early stage of its evolution. The result is that significant color transparency effects, which can either enhance or suppress computed cross sections, are predicted to occur for 4GeV2Q2 10 (GeV/c)2\sim 4 GeV^2 \ge Q^2\leq~10~(GeV/c)^2.Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to be published in Z.Phys.

    Coulomb induced diffraction of energetic hadrons into jets

    Get PDF
    The electromagnetic (e.m.) current conservation and renormalizability of QCD are used to calculate the amplitude of energetic hadron(photon) diffraction into several jets with large relative transverse momenta off the nucleon(nucleus) Coulomb field. Numerical estimates of the ratio of e.m. and strong amplitudes show that within the kinematic range where the leading twist approximation for the strong amplitude is applicable, the e.m. contribution can be neglected. In pA scattering at LHC and in the fragmentation of a photon into two jets in ultraperipheral AA collisions in the black limit (which maybe realistic at LHC) e.m. contribution may win.Comment: 10 page

    The colour dipole approach to small-x processes

    Get PDF
    We explain why it is possible to formulate a wide variety of high energy (small-x) photon-proton processes in terms of a universal dipole cross section and compare and contrast various parameterizations of this function that exist in the literature.Comment: 6 pages, latex, 2 figures. Contribution to Durham Collider Workshop (Sept 99) proceeding

    Dijet production as a centrality trigger for p-p collisions at CERN LHC

    Full text link
    We demonstrate that a trigger on hard dijet production at small rapidities allows to establish a quantitative distinction between central and peripheral collisions in pbar-p and p-p collisions at Tevatron and LHC energies. Such a trigger strongly reduces the effective impact parameters as compared to minimum bias events. This happens because the transverse spatial distribution of hard partons (x >~ 10^{-2}) in the proton is considerably narrower than that of soft partons, whose collisions dominate the total cross section. In the central collisions selected by the trigger, most of the partons with x >~ 10^{-2} interact with a gluon field whose strength rapidly increases with energy. At LHC (and to some extent already at Tevatron) energies the strength of this interaction approaches the unitarity ('black-body') limit. This leads to specific modifications of the final state, such as a higher probability of multijet events at small rapidities, a strong increase of the transverse momenta and depletion of the longitudinal momenta at large rapidities, and the appearance of long-range correlations in rapidity between the forward/backward fragmentation regions. The same pattern is expected for events with production of new heavy particles (Higgs, SUSY). Studies of these phenomena would be feasible with the CMS-TOTEM detector setup, and would have considerable impact on the exploration of the physics of strong gluon fields in QCD, as well as the search for new particles at LHC.Comment: 17 pages, Revtex 4, 14 EPS figures. Expanded discussion of some points, added 3 new figures and new references. Included comment on connection with cosmic ray physics near the GZK cutoff. To appear in Phys Rev

    Feynman Graphs and Generalized Eikonal Approach to High Energy Knock-Out Processes

    Full text link
    The cross section of hard semi-exclusive A(e,eN)(A1)A(e,e'N)(A-1) reactions for fixed missing energy and momentum is calculated within the eikonal approximation. Relativistic dynamics and kinematics of high energy processes are unambiguously accounted for by using the analysis of appropriate Feynman diagrams. A significant dependence of the final state interactions on the missing energy is found, which is important for interpretation of forthcoming color transparency experiments. A new, more stringent kinematic restriction on the region where the contribution of short-range nucleon correlations is enhanced in semi-exclusive knock-out processes is derived. It is also demonstrated that the use of light-cone variables leads to a considerable simplification of the description of high-energy knock-out reactions.Comment: 24 pages, LaTex, two Latex and two ps figures, uses FEYNMAN.tex and psfig.sty. Revisied version to appear in Phys. Rev.
    corecore