512 research outputs found
Feynman Graphs and Generalized Eikonal Approach to High Energy Knock-Out Processes
The cross section of hard semi-exclusive reactions for fixed
missing energy and momentum is calculated within the eikonal approximation.
Relativistic dynamics and kinematics of high energy processes are unambiguously
accounted for by using the analysis of appropriate Feynman diagrams. A
significant dependence of the final state interactions on the missing energy is
found, which is important for interpretation of forthcoming color transparency
experiments. A new, more stringent kinematic restriction on the region where
the contribution of short-range nucleon correlations is enhanced in
semi-exclusive knock-out processes is derived. It is also demonstrated that the
use of light-cone variables leads to a considerable simplification of the
description of high-energy knock-out reactions.Comment: 24 pages, LaTex, two Latex and two ps figures, uses FEYNMAN.tex and
psfig.sty. Revisied version to appear in Phys. Rev.
Q**2-dependence of deep inelastic lepton scattering off nuclear targets
Deep inelastic scattering of leptons off nuclear targets is analized within
the convolution model taking into account nucleon-nucleon correlations. We show
that in the nuclear medium nucleons are distributed according to a function
that exhibits a sizeable Q**2-dependence and reduces to the ordinary light-cone
distribution in the Bjorken limit. At Q**2 1 this
Q**2-dependence turns out to be stronger than the one associated with the
nucleon structure function, predicted by pertubative quantum chromodynamics.Comment: 11 pages including figs. Figs. can be sent by PS-fil
Correlation Effects in Nuclear Transparency
The Glauber approximation is used to calculate the contribution of nucleon
correlations in high-energy reactions. When the excitation energy of
the residual nucleus is small, the increase of the nuclear transparency due to
correlations between the struck nucleon and the other nucleons is mostly
compensated by a decrease of the transparency due to the correlations between
non detected nucleons. We derive Glauber model predictions for nuclear
transparency for the differential cross section when nuclear shell level
excitations are measured. The role of correlations in color transparency is
briefly discussed.Comment: 24 pages revtex, 4 uuencoded PostScript Figures as separate fil
-dependence of backward pion multiplicity in neutrino-nucleus interactions
The production of pions emitted backward in inelastic neutrino-nucleus
interactions is analyzed within the impulse approximation in the framework of
the dual parton model. We focus on the -dependence of the multiplicity of
negative pions, normalized to the total cross section of the reaction . The inclusion of planar (one-Reggeon exchange) and cylindrical
(one-Pomeron exchange) graphs leads to a multiplicity that decreases as
increases, in agreement with recent measurements carried out at CERN by the
NOMAD collaboration. A realistic treatment of the high momentum tail of the
nucleon distribution in a nucleus also allows for a satisfactory description of
the semi-inclusive spectrum of backward pions.Comment: 15 pages, 4 figure
Finite formation time effects in quasi-elastic scattering on nuclear targets
The problem of the final state interaction in quasi-elastic
scattering at large , is investigated by exploiting the idea that the
ejected nucleon needs a finite amount of time to assume its asymptotic form. It
is shown that when the dependence of the scattering amplitude of the ejected
nucleon on its virtuality is taken into account, the final state interaction is
decreased. The developed approach is simpler to implement than the one based on
the color transparency description of the damping of the final state
interaction, and is essentially equivalent to the latter in the case of the
single rescattering term. The process on the deuteron is numerically
investigated and it is shown that, at , appreciable finite formation time
effects at of the order of 10 (GeV/c) are expected.Comment: 23 pages, 3 figure
A linked cluster expansion for the calculation of the semi-inclusive A(e,e'p)X processes using correlated Glauber wave functions
The distorted one-body mixed density matrix, which is the basic nuclear
quantity appearing in the definition of the cross section for the
semi-inclusive A(e,e'p)X processes, is calculated within a linked-cluster
expansion based upon correlated wave functions and the Glauber multiple
scattering theory to take into account the final state interaction of the
ejected nucleon. The nuclear transparency for 16O and 40Ca is calculated using
realistic central and non-central correlations and the important role played by
the latter is illustrated.Comment: 18 pages, RevTeX, 3 ps figures. Final version, to appear in Phys.
Rev.
Correlations and Fluctuations in High-Energy Nuclear Collisions
Nucleon correlations in the target and projectile nuclei are shown to reduce
significantly the fluctuations in multiple nucleon-nucleon collisions, total
multiplicity and transverse energy in relativistic heavy-ion collisions, in
particular for heavy projectile and target. The interplay between cross-section
fluctuations, from color transparency and opacity, and nuclear correlations is
calculated and found to be able to account for large fluctuations in transverse
energy spectra. Numerical implementation of correlations and cross-section
fluctuations in Monte-Carlo codes is discussed.Comment: 30 pages, in Revtex, plus 4 figures. Figures and preprint can be
obtained by mailing address to: [email protected]
Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x
A detailed study of inclusive deep inelastic scattering (DIS) from mirror A =
3 nuclei at large values of the Bjorken variable x is presented. The main
purpose is to estimate the theoretical uncertainties on the extraction of the
neutron DIS structure function from such nuclear measurements. On one hand,
within models in which no modification of the bound nucleon structure functions
is taken into account, we have investigated the possible uncertainties arising
from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii)
finite Q**2 effects neglected in the Bjorken limit, iii) the role of different
prescriptions for the nucleon Spectral Function normalization providing baryon
number conservation, and iv) the differences between the virtual nucleon and
light cone formalisms. Although these effects have been not yet considered in
existing analyses, our conclusion is that all these effects cancel at the level
of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other
hand we have considered several models in which the modification of the bound
nucleon structure functions is accounted for to describe the EMC effect in DIS
scattering from nuclei. It turns out that within these models the cancellation
of nuclear effects is expected to occur only at a level of ~ 3%, leading to an
accuracy of ~ 12 % in the extraction of the neutron to proton structure
function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad
range of models of the EMC effect is that the previously suggested iteration
procedure does not improve the accuracy of the extraction of the neutron to
proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in
Section 4; no change in the conclusion
Off-forward parton distributions and Shuvaev's transformations
We review Shuvaev's transformations, that relate off-forward parton
distributions (OFPDs) to so-called effective forward parton distributions
(EFPDs). The latter evolve like conventional forward partons. We express
nonforward amplitudes, depending on OFPDs, directly in terms of EFPDs and
construct a model for the EFPDs, which allows to consistently express them in
terms of the conventional forward parton distributions and nucleon form
factors. Our model is self-consistent for arbitrary x, xi, mu, and t.Comment: 13 pages, 7 eps-figures, LaTeX2e, added references, corrected typo
- …