143 research outputs found

    Large magnetoresistance at room-temperature in semiconducting polymer sandwich devices

    Full text link
    We report on the discovery of a large, room temperature magnetoresistance (MR) effect in polyfluorene sandwich devices in weak magnetic fields. We characterize this effect and discuss its dependence on voltage, temperature, film thickness, electrode materials, and (unintentional) impurity concentration. We usually observed negative MR, but positive MR can also be achieved under high applied electric fields. The MR effect reaches up to 10% at fields of 10mT at room temperature. The effect shows only a weak temperature dependence and is independent of the sign and direction of the magnetic field. We find that the effect is related to the hole current in the devices.Comment: 3 pages, 4 figure

    Lock-in detection for pulsed electrically detected magnetic resonance

    Get PDF
    We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped Silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the read-out of the spin state.Comment: 4 pages, 2 figure

    Emission Mechanism in PLED under DC Magnetic Field

    Full text link

    Effect of interchain coupling on conducting polymer luminescence: excimers in derivatives of poly(phenylene vinylene)

    Full text link
    Optical excitation of a chain in a polymer film may result in formation of an excimer, a superposition of on-chain excitons and charge-transfer excitons on the originally excited chain and a neighboring chain. The excimer emission is red-shifted compared to that of an on-chain exciton by an amount depending on the interchain coupling tt_\perp. Setting up the excimer wavefunction and calculating the red shift, we determine average tt_\perp values, referred to a monomer, of 0.52 eV and 0.16 eV for poly(2,5-hexyloxy pp-phenylene cyanovinylene), CN-PPV, and poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1, 4 p-phenylene vinylene], MEH-PPV, respectively, and use them to determine the effect of interchain distance on the emission.Comment: 10 pages, RevTeX, 1 PS figure, replaced version of cond-mat/9707095, accepted for publication in Phys. Rev. B, Rapid Communicatio

    Lipidomic profile of seminal plasma in non-obstructive azoospermia with sperm maturation arrest

    Get PDF
    Introduction. The difference between obstructive and non-obstructive azoospermia with sperm maturation arrest is important for the choice of treatment tactics and adequate counseling of a married couple.Purpose of the study. The study aimed to assess the semen lipid profile in patients with sperm maturation arrest. Materials and methods. Samples of seminal plasma for lipid composition of 24 men with normozoospermia and 64 men with azoospermia were studied. Patients with azoospermia underwent microdissection testicular biopsy followed by the detection of testicular tissue pathology. Lipid extracts were analyzed by liquid chromatography with mass spectrometry. Lipid data were compared with the results of pathomorphological studies.Results. Comparison of two groups revealed a statistically significant concentration differences for 22 lipids detected in positive-ion mode and 11 lipids detected in negative-ion mode. Those lipids mainly belong to the classes hexosylceramides, sphingomyelins and phosphatidylcholines — simple ethers and oxidized lipids. In multivariate analysis, the following lipids were found to be statistically significant predictors of sperm maturation arrest: PC 16: 0_22: 6 lipid (β-coefficient: -0.73; 95% confidence interval (95% CI): -1.42 to -0.27; odds ratio (OR): 0.48; OR CI: 0.24 to 0.76; Wald's test: -2.58; p = 0.01), SM d20: 1/22:2 lipid (β-coefficient 4.96; 95% CI 2.29 to 9.13; OR: 142.31; OR CI: 9.90 to 9.22^103; Wald's test: 2.93; p = 0.003); PG 20:3_22: 6 lipid (β-coefficient 2.52; 95% CI 1.13 to 4.49; OR: 12.37; OR CI: 3.10 to 89.27; Wald's test: 3.02; p = 0.002); PC O- 16: 1/16:0 lipid (β-coefficient 1.96; 95% CI -4.12 to 0.27; OR: 0.14; OR CI: 0.02 to 0.76; Wald's test: -2.05; p = 0.04). The prediction model characteristics of sperm maturation arrest, obtained during cross-validation in the positiveion mode composed: sensitivity 91%, specificity 85%; in negative-ion mode: sensitivity 75%; specificity 81%.Conclusions. Even though early stages of spermatogenesis are equally preserved in both fertile men and men with homogeneous sperm maturation arrest, the semen in the studied group of patients differed in its lipid profile. Patients with non-obstructive azoospermia, associated with meiosis arrest, may have unique lipidomic characteristics of seminal plasma, which in the future will make it possible to differentiate various variants of severe male infertility using non-invasive methods
    corecore