12,774 research outputs found

    Assessing the ability of the 14C projection-age method to constrain the circulation of the past in a 3-D ocean model

    Get PDF
    Radiocarbon differences between benthic and planktonic foraminifera (B-P ages) and radiocarbon projection ages are both used to determine changes of the past ocean circulation rate. A global 3-D ocean circulation model with a constant modern ocean circulation is used to study which method is less influenced by atmospheric Δ14C variations. Three factors cause uncertainties: first, the long equilibration time of the ocean after atmospheric Δ14C changes; second, different mixing processes in the ocean, which cause an ocean response of smaller amplitude than the atmospheric forcing; and third, the unknown source region and corresponding initial surface 14C reservoir age of subsurface waters. The model suggests that B-P ages and projection ages have lower uncertainties the closer they are to deepwater formation zones. In the North Atlantic the B-P age method is less influenced by atmospheric Δ14C variations than the projection-age method. Projections ages vary less in the Pacific as long as atmospheric Δ14C decreases linearly. A more irregular atmospheric Δ14C evolution leads to age variations of similar magnitude with both methods. On the basis of the model experiment, we suggest a potential improvement of the projection-age method

    Zero-mode contribution to the light-front Hamiltonian of Yukawa type models

    Get PDF
    Light-front Hamiltonian for Yukawa type models is determined without the framework of canonical light-front formalism. Special attention is given to the contribution of zero modes.Comment: 14 pages, Latex, revised version with minor changes, Submitted to J.Phys.

    Evolution of unoccupied resonance during the synthesis of a silver dimer on Ag(111)

    Full text link
    Silver dimers were fabricated on Ag(111) by single-atom manipulation using the tip of a cryogenic scanning tunnelling microscope. An unoccupied electronic resonance was observed to shift toward the Fermi level with decreasing atom-atom distance as monitored by spatially resolved scanning tunnelling spectroscopy. Density functional calculations were used to analyse the experimental observations and revealed that the coupling between the adsorbed atoms is predominantly direct rather than indirect via the Ag(111) substrate.Comment: 9 pages, 3 figure

    Are fish immunocompetent enough to face climate change?

    Get PDF
    Ongoing climate change has already been associated with increased disease outbreaks in wild and farmed fish. Here, we evaluate the current knowledge of climate change-related ecoimmunology in teleosts with a focus on temperature, hypoxia, salinity and acidification before exploring interactive effects of multiple stressors. Our literature review reveals that acute and chronic changes in temperature and dissolved oxygen can compromise fish immunity which can lead to increased disease susceptibility. Moreover, temperature and hypoxia have already been shown to enhance the infectivity of certain pathogens/parasites and to accelerate disease progression. Too few studies exist that have focussed on acidification, but direct immune effects seem to be limited while salinity studies have led to contrasting results. Likewise, multi-stressor experiments essential for unravelling the interactions of simultaneously changing environmental factors are still scarce. This ultimately impedes our ability to estimate to what extent climate change will hamper fish immunity. Our review about epigenetic regulation mechanisms highlights the acclimation potential of the fish immune response to changing environments. However, due to the limited number of epigenetic studies, overarching conclusions cannot be drawn. Finally, we provide an outlook on how to better estimate the effects of realistic climate change scenarios in future immune studies in fish

    Local Fields without Restrictions on the Spectrum of 4-Momentum Operator and Relativistic Lindblad Equation

    Full text link
    Quantum theory of Lorentz invariant local scalar fields without restrictions on 4-momentum spectrum is considered. The mass spectrum may be both discrete and continues and the square of mass as well as the energy may be positive or negative. Such fields can exist as part of a hidden matter in the Universe if they interact with ordinary fields very weakly. Generalization of Kallen-Lehmann representation for propagators of these fields is found. The considered generalized fields may violate CPT- invariance. Restrictions on mass-spectrum of CPT-violating fields are found. Local fields that annihilate vacuum state and violate CPT- invariance are constructed in this scope. Correct local relativistic generalization of Lindblad equation for density matrix is written for such fields. This generalization is particulary needed to describe the evolution of quantum system and measurement process in a unique way. Difficulties arising when the field annihilating the vacuum interacts with ordinary fields are discussed.Comment: Latex 23 pages, sent to "Foundations of Physics

    Records and sequences of records from random variables with a linear trend

    Full text link
    We consider records and sequences of records drawn from discrete time series of the form Xn=Yn+cnX_{n}=Y_{n}+cn, where the YnY_{n} are independent and identically distributed random variables and cc is a constant drift. For very small and very large drift velocities, we investigate the asymptotic behavior of the probability pn(c)p_n(c) of a record occurring in the nnth step and the probability PN(c)P_N(c) that all NN entries are records, i.e. that X1<X2<...<XNX_1 < X_2 < ... < X_N. Our work is motivated by the analysis of temperature time series in climatology, and by the study of mutational pathways in evolutionary biology.Comment: 21 pages, 7 figure

    A functional non-central limit theorem for jump-diffusions with periodic coefficients driven by stable Levy-noise

    Full text link
    We prove a functional non-central limit theorem for jump-diffusions with periodic coefficients driven by strictly stable Levy-processes with stability index bigger than one. The limit process turns out to be a strictly stable Levy process with an averaged jump-measure. Unlike in the situation where the diffusion is driven by Brownian motion, there is no drift related enhancement of diffusivity.Comment: Accepted to Journal of Theoretical Probabilit
    • …
    corecore