103 research outputs found

    Objective classification of residents based on their psychomotor laparoscopic skills

    Get PDF
    Background - From the clinical point of view, it is important to recognize residents’ level of expertise with regard to basic psychomotor skills. For that reason, surgeons and surgical organizations (e.g., Acreditation Council for Graduate Medical Education, ACGME) are calling for assessment tools that credential residents as technically competent. Currently, no method is universally accepted or recommended for classifying residents as ‘‘experienced,’’ ‘‘intermediates,’’ or ‘‘novices’’ according to their technical abilities. This study introduces a classification method for recognizing residents’ level of experience in laparoscopic surgery based on psychomotor laparoscopic skills alone. Methods - For this study, 10 experienced residents (>100 laparoscopic procedures performed), 10 intermediates (10– 100 procedures performed), and 11 novices (no experience) performed four tasks in a box trainer. The movements of the laparoscopic instruments were recorded with the TrEndo tracking system and analyzed using six motion analysis parameters (MAPs). The MAPs of all participants were submitted to principal component analysis (PCA), a data reduction technique. The scores of the first principal components were used to perform linear discriminant analysis (LDA), a classification method. Performance of the LDA was examined using a leave-one-out crossvalidation. Results - Of 31 participants, 23 were classified correctly with the proposed method, with 7 categorized as experienced, 7 as intermediates, and 9 as novices. Conclusions - The proposed method provides a means to classify residents objectively as experienced, intermediate, or novice surgeons according to their basic laparoscopic skills. Due to the simplicity and generalizability of the introduced classification method, it is easy to implement in existing trainers.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Visual force feedback in laparoscopic training

    Get PDF
    Background - To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual reality (VR) trainers. Current training is focused mainly on hand–eye coordination. Training methods that focus on applying the right amount of force are not yet available. Methods - The aim of this project is to develop a low-cost training system that measures the interaction force between tissue and instruments and displays a visual representation of the applied forces inside the camera image. This visual representation continuously informs the subject about the magnitude and the direction of applied forces. To show the potential of the developed training system, a pilot study was conducted in which six novices performed a needledriving task in a box trainer with visual feedback of the force, and six novices performed the same task without visual feedback of the force. All subjects performed the training task five times and were subsequently tested in a post-test without visual feedback. Results - The subjects who received visual feedback during training exerted on average 1.3 N (STD 0.6 N) to drive the needle through the tissue during the post-test. This value was considerably higher for the group that received no feedback (2.6 N, STD 0.9 N). The maximum interaction force during the post-test was noticeably lower for the feedback group (4.1 N, STD 1.1 N) compared with that of the control group (8.0 N, STD 3.3 N). Conclusions - The force-sensing training system provides us with the unique possibility to objectively assess tissuehandling skills in a laboratory setting. The real-time visualization of applied forces during training may facilitate acquisition of tissue-handling skills in complex laparoscopic tasks and could stimulate proficiency gain curves of trainees. However, larger randomized trials that also include other tasks are necessary to determine whether training with visual feedback about forces reduces the interaction force during laparoscopic surgery.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Environmental sustainability and gynaecological surgery:Which factors influence behaviour? An interview study

    Get PDF
    OBJECTIVE: To assess the various factors that influence environmentally sustainable behaviour in gynaecological surgery and examine the differences between gynaecologists and residents.DESIGN: An interview study.SETTING: Academic and non-academic hospitals in the Netherlands.POPULATION: Gynaecologists (n = 10) and residents (n = 6).METHODS: Thematic analysis of semi-structured interviews to determine the various factors that influence environmentally sustainable behaviour in gynaecological surgery and to examine the differences between gynaecologists and residents. By using the Desmond framework and the COM-B BCW, both organisational and individual factors related to behaviour were considered.MAIN OUTCOME MEASURES: Factors that influence environmentally sustainable behaviour.RESULTS: Awareness is increasing but practical knowledge is insufficient. It is crucial to integrate education on the environmental impact of everyday decisions for residents and gynaecologists. Gynaecologists make their own choices but residents' autonomy is limited. There is the necessity to provide environmentally sustainable surgical equipment without compromising other standards. There is a need for a societal change that encourages safe and open communication about environmental sustainability. To transition to environmentally sustainable practices, leadership, time, collaboration with the industry and supportive regulatory changes are essential.CONCLUSION: This study lays the groundwork for promoting more environmentally sustainable behaviour in gynaecological surgery. The key recommendations, addressing hospital regulations, leadership, policy revisions, collaboration with the industry, guideline development and education, offer practical steps towards a more sustainable healthcare system. Encouraging environmentally sustainable practices should be embraced to enhance the well-being of both our planet and our population, driving us closer to a more environmentally sustainable future in healthcare.</p

    De toekomst van werk. Over ecologische, technologische en politieke ontwikkelingen en het belang van strategische keuzes en politieke strijd

    Get PDF
    n dit artikel wordt een aantal factoren besproken die naar onze mening mondiaal van invloed zullen zijn op de toekomst van arbeid. We lichten er drie belangrijke factoren uit, namelijk ecologische, technologische en politieke invloedfactoren. Uit onze beschouwing komt een gemengd beeld over de toekomst van werk naar voren. We zien groei van vakmanschap en decent work, bijvoorbeeld gekoppeld aan de energietransitie en in de micro-elektronica, maar ook het voortduren van werk dat niet voldoet aan de (ILO-)standaarden van decent work zoals nachtwerk in distributiecentra en platformarbeid. Het voortdurende proces waarin de toekomst van arbeid zich ontwikkelt is onderhevig aan strategische keuzen en politieke strijd van verschillende stakeholders in de context van ecologie, technologie en politiek. De vorm (loonarbeid, zelfstandige arbeid) en inhoud van werk, de beroepenstructuur en de arbeidsverhoudingen veranderen door onder andere AI en overheidsbeleid. De Europese politiek kiest een actievere opstelling. Voor de Europese Commissie staat beleid gericht op regulering van bijvoorbeeld kunstmatige intelligente (artifical intelligence; AI) niet op zichzelf, maar wordt ook geleid door het streven naar bescherming van het Europese type open society met democratische vrijheden voor burgers, onafhankelijke rechtspraak en vrije media. Stakeholders die, net als wij, decent work en de open society als referentiepunt hebben voor de gewenste toekomst van werk zullen zich daarvoor in het politieke speelveld hard moeten maken

    Force measurement platform for training and assessment of laparoscopic skills

    Get PDF
    Background - To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual-reality (VR) trainers. Current training is mainly focused on hand–eye coordination. Training methods that focus on applying the right amount of force are not yet available. Methods - The aim of this project is to develop a system to measure forces and torques during laparoscopic training tasks as well as the development of force parameters that assess tissue manipulation tasks. The force and torque measurement range of the developed force platform are 0–4 N and 1 Nm (torque), respectively. To show the potential of the developed force platform, a pilot study was conducted in which five surgeons experienced in intracorporeal suturing and five novices performed a suture task in a box trainer. Results - During the pilot study, the maximum and mean absolute nonzero force that the novice used were 4.7 N (SD 1.3 N) and 2.1 N (SD 0.6 N), respectively. With a maximum force of 2.6 N (SD 0.4 N) and mean nonzero force of 0.9 N (SD 0.3 N), the force exerted by the experts was significantly lower.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Skills training in minimally invasive surgery in Dutch obstetrics and gynecology residency curriculum

    Get PDF
    The complexity of acquiring minimally invasive surgical (MIS) skills, combined with smaller case volumes for residents have pushed the development of skills training facilities on simulators outside the operating room (OR). Medico-legal and financial constraints have stimulated this development even more. However, the implementation of simulator training into a residency curriculum is shown to be troublesome. MIS skills training is organized in a uniform and easily applicable way in the Dutch obstetrics and gynecology residency curriculum. Every resident is obliged to attend the same basic surgical skills course, named Cobra-alpha course, intentionally during postgraduate year (PGY) 1 or 2. Furthermore, surgical skills are trained, evaluated and expanded on simulators in teaching hospitals. Additional to the Cobra-alpha course, residents may attend advanced training courses and congresses focusing on laparoscopy and hysteroscopy. This organization guarantees a uniform introduction to MIS skills training for every resident. However, preconditions for continuous training and evaluation after this introduction have to be optimized

    Diagnostic hysteroscopy and saline infusion sonography in the diagnosis of intrauterine abnormalities: an assessment of patient preference

    Get PDF
    This study was conducted to assess whether women would prefer to undergo saline infusion sonography (SIS) or office hysteroscopy for the investigation of the uterine cavity. In a randomised controlled trial, 100 patients underwent SIS or office hysteroscopy for assessing patients' pain scores. After the investigation, 92 of them were asked to fill out an anonymous questionnaire addressing their preference regarding the method of evaluation and treatment of the uterine cavity. A control group, consisting of 50 women who never underwent SIS or office hysteroscopy, was also asked to complete an identical questionnaire. The questionnaire was completed by 113 women (83.7%). Twenty-four (21.2%) women would opt for SIS, whereas 52 (46.0%) would opt for office hysteroscopy, and 37 (32.7%) had no preference. If therapy would be necessary, 48.7% of the women would opt for an outpatient treatment, whereas 33.0% of the women would prefer treatment under general anaesthesia. Despite the fact that SIS is less painful, the majority of the women prefer office hysteroscopy. Additionally, therapy in an outpatient setting is preferred to a day case setting

    Retracting and seeking movements during laparoscopic goal-oriented movements. Is the shortest path length optimal?

    Get PDF
    Aims- Minimally invasive surgery (MIS) requires a high degree of eye–hand coordination from the surgeon. To facilitate the learning process, objective assessment systems based on analysis of the instruments’ motion are being developed. To investigate the influence of performance on motion characteristics, we examined goaloriented movements in a box trainer. In general, goal-oriented movements consist of a retracting and a seeking phase, and are, however, not performed via the shortest path length. Therefore, we hypothesized that the shortest path is not an optimal concept in MIS. Methods-Participants were divided into three groups (experts, residents, and novices). Each participant performed a number of one-hand positioning tasks in a box trainer. Movements of the instrument were recorded with the TrEndo tracking system. The movement from point A to B was divided into two phases: A-M (retracting) and M-B (seeking). Normalized path lengths (given in %) of the two phases were compared. Results- Thirty eight participants contributed. For the retracting phase, we found no significant difference between experts [median (range) %: 152 (129–178)], residents [164 (126–250)], and novices [168 (136–268)]. In the seeking phase, we find a significant difference (<0.001) between experts [180 (172–247)], residents [201 (163–287)], and novices [290 (244–469)]. Moreover, within each group, a significant difference between retracting and seeking phases was observed. Conclusions- Goal-oriented movements in MIS can be split into two phases: retracting and seeking. Novices are less effective than experts and residents in the seeking phase. Therefore, the seeking phase is characteristic of performance differences. Furthermore, the retracting phase is essential, because it improves safety by avoiding intermediate tissue contact. Therefore, the shortest path length, as presently used during the assessment of basic MIS skills, may be not a proper concept for analyzing optimal movements and, therefore, needs to be revised.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    An Isolator System for minimally invasive surgery: the new design

    Get PDF
    Background - The risk of obtaining a postsurgical infection depends highly on the air quality surrounding the exposed tissue, surgical instruments, and materials. Many isolators for open surgery have been invented to create a contained sterile volume around the exposed tissue. With the use of an isolator, a surgical procedure can be performed outside sterile environments. The goal of this study was to design an Isolator System (IS) for standard laparoscopic instruments while instrument movements are not restricted. Methods - The developed IS consists of a sleeve to protect the instrument shaft and tip and a special balloon to protect the incision and trocar tube. A coupling mechanism connected at the sleeve allows instrument changes without contamination of the isolated parts. Smoke tests were performed to show that outside air does not enter the new IS during a simulated laparoscopic procedure. Eight test runs and one baseline run inside a contained volume filled with thick smoke were performed to investigate whether smoke particles entered the Isolator System. Filters were used to identify smoke entering the Isolator System. Results - Seven filters showed no trace of smoke particles. In one test run, a part of the IS loosened and a small brown spot was visible. The filter from the baseline run was completely covered with a thick layer of particles, proving the effectiveness of the test. During all test runs, the isolated instrument was successfully locked on and unlocked from the isolated trocar. Instrument movements gave no complications. After removal of the isolated instrument, it took three novices an average of 3.1 (standard deviation (SD), 0.7) seconds to replace it correctly on the isolated trocar. Conclusions - The designed IS for laparoscopy can increase sterility in environments where sterility cannot be guaranteed. The current design is developed for laparoscopy, but it can easily be adapted for other fields in minimally invasive surgery.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin
    corecore