12,548 research outputs found

    Neural Dynamics of 3-D Surface Perception: Figure-Ground Separation and Lightness Perception

    Full text link
    This article develops the FACADE theory of three-dimensional (3-D) vision to simulate data concerning how two-dimensional (2-D) pictures give rise to 3-D percepts of occluded and occluding surfaces. The theory suggests how geometrical and contrastive properties of an image can either cooperate or compete when forming the boundary and surface representations that subserve conscious visual percepts. Spatially long-range cooperation and short-range competition work together to separate boundaries of occluding ligures from their occluded neighbors, thereby providing sensitivity to T-junctions without the need to assume that T-junction "detectors" exist. Both boundary and surface representations of occluded objects may be amodaly completed, while the surface representations of unoccluded objects become visible through modal processes. Computer simulations include Bregman-Kanizsa figure-ground separation, Kanizsa stratification, and various lightness percepts, including the Munker-White, Benary cross, and checkerboard percepts.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI 94-01659, IRI 97-20333); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0657

    The Single Market and The Geographical Diversification of Leading Firms in the EU

    Get PDF
    Geographical diversification describes the degree to which a firm’s operations in a particular industry are dispersed across countries. This paper presents evidence on the geographical diversification within the EU of the 290-odd largest manufacturing firms in Europe. We also explore how geographical diversification changed with the introduction of the Single Market. We highlight differences between firms’ home and foreign operations and study the variation across sectors and across EU countries. Ireland, which began its rapid FDI-fuelled convergence on average EU living standards over our data period, emerges as a special case and receives particular attention.Single Market, Geographical Diversification, FDI, Multinational Corporations

    Evaluating Multimodal Driver Displays of Varying Urgency

    Get PDF
    Previous studies have evaluated Audio, Visual and Tactile warnings for drivers, highlighting the importance of conveying the appropriate level of urgency through the signals. However, these modalities have never been combined exhaustively with different urgency levels and tested while using a driving simulator. This paper describes two experiments investigating all multimodal combinations of such warnings along three different levels of designed urgency. The warnings were first evaluated in terms of perceived urgency and perceived annoyance in the context of a driving simulator. The results showed that the perceived urgency matched the designed urgency of the warnings. More urgent warnings were also rated as more annoying but the effect of annoyance was lower compared to urgency. The warnings were then tested for recognition time when presented during a simulated driving task. It was found that warnings of high urgency induced quicker and more accurate responses than warnings of medium and of low urgency. In both studies, the number of modalities used in warnings (one, two or three) affected both subjective and objective responses. More modalities led to higher ratings of urgency and annoyance, with annoyance having a lower effect compared to urgency. More modalities also led to quicker responses. These results provide implications for multimodal warning design and reveal how modalities and modality combinations can influence participant responses during a simulated driving task

    A Self-Organizing Neural Network Model for Redundant Sensory-Motor Control, Motor Equivalence, and Tool Use

    Full text link
    A neural network is introduced which provides a solution of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space. To do this, the network self-organizes a mapping from motion directions in 3-D space to velocity commands in joint space. Computer simulations demonstrate that, without any additional learning, the network can generate accurate movement commands that compensate for variable tool lengths, clamping of joints, distortions of visual input by a prism, and unexpected limb perturbations. Blind reaches have also been simulated.National Science Foundation (IRI-87-16960, IRI-90-24877

    Input window size and neural network predictors

    Get PDF
    Neural network approaches to time series prediction are briefly discussed, and the need to specify an appropriately sized input window identified. Relevant theoretical results from dynamic systems theory are briefly introduced, and heuristics for finding the correct embedding dimension, and hence window size, are discussed. The method is applied to two time series and the resulting generalisation performance of the trained feedforward neural network predictors is analysed. It is shown that the heuristics can provide useful information in defining the appropriate network architectur

    Distinguishing compact binary population synthesis models using gravitational-wave observations of coalescing binary black holes

    Get PDF
    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such as supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through gravitational waves will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate gravitational-wave observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.Comment: 16 pages, 8 figures, updated to match version published in Ap

    Cost and Compensation of Injuries in Medical Malpractice

    Get PDF
    Compensation determinations for victims of medical malpractice were studied. Results showed that for birth-related and emergency room cases of permanent injury in Florida, a claimant receiving much more than economic loss in compensation more nearly appears to be the exception than the norm

    A Self-Organizing Neural Model of Motor Equivalent Reaching and Tool Use by a Multijoint Arm

    Full text link
    This paper describes a self-organizing neural model for eye-hand coordination. Called the DIRECT model, it embodies a solution of the classical motor equivalence problem. Motor equivalence computations allow humans and other animals to flexibly employ an arm with more degrees of freedom than the space in which it moves to carry out spatially defined tasks under conditions that may require novel joint configurations. During a motor babbling phase, the model endogenously generates movement commands that activate the correlated visual, spatial, and motor information that are used to learn its internal coordinate transformations. After learning occurs, the model is capable of controlling reaching movements of the arm to prescribed spatial targets using many different combinations of joints. When allowed visual feedback, the model can automatically perform, without additional learning, reaches with tools of variable lengths, with clamped joints, with distortions of visual input by a prism, and with unexpected perturbations. These compensatory computations occur within a single accurate reaching movement. No corrective movements are needed. Blind reaches using internal feedback have also been simulated. The model achieves its competence by transforming visual information about target position and end effector position in 3-D space into a body-centered spatial representation of the direction in 3-D space that the end effector must move to contact the target. The spatial direction vector is adaptively transformed into a motor direction vector, which represents the joint rotations that move the end effector in the desired spatial direction from the present arm configuration. Properties of the model are compared with psychophysical data on human reaching movements, neurophysiological data on the tuning curves of neurons in the monkey motor cortex, and alternative models of movement control.National Science Foundation (IRI 90-24877); Office of Naval Research (N00014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499); National Science Foundation (IRI 90-24877
    • …
    corecore