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Abstract

We compare the finite sample performance of a range of tests of linear re-
strictions for linear panel data models estimated using Generalised Method
of Moments (GMM). These include standard asymptotic Wald tests based
on one-step and two-step GMM estimators; two bootstrapped versions of
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curate asymptotic approximation to the distribution of the estimator; the
LM test; and three criterion-based tests that have recently been proposed.
We consider both the AR(1) panel model, and a design with predetermined
regressors. The corrected two-step Wald test performs similarly to the stan-
dard one-step Wald test, whilst the bootstrapped one-step Wald test, the
LM test, and a simple criterion-difference test can provide more reliable
finite sample inference in some cases.
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1. Introduction

Standard Wald tests based on two-step efficient Generalised Method of Moments
(GMM) estimators are known to have poor finite sample properties in several
contexts. A leading example occurs in panel data models estimated using sequen-
tial moment conditions, where the number of moment conditions available grows
rapidly with the time dimension of the panel. In this case it is well known that the
usual asymptotic Wald test based on the two-step estimator can be severely over-
sized, even when the estimator itself has very little bias (see, for example, Blundell
and Bond, 1998). The standard expression for the asymptotic variance of this es-
timator ignores the presence of estimated parameters in the weight matrix, and
as a result the usual asymptotic standard errors can be much too small.! This
problem is so severe that researchers commonly report hypothesis tests based on
inefficient one-step GMM estimators, for which standard asymptotic Wald tests
have been found to be more reliable.

A distinct problem with inference based on GMM estimators occurs when
the moment conditions used provide only weak identification of the parameters,
or when the instruments available are weak. In this case the estimators can
be subject to large finite sample biases, which again result in Wald tests being
seriously oversized, in this case for both one-step and two-step estimators. Again
this problem occurs commonly in panel data applications, where the time series are
often highly persistent so that differences are difficult to forecast, but differencing-

type transformations are used to remove permanent individual effects.?

1See Arellano and Bond (1991) for simulation evidence, and Koenker and Machado (1998)
and Windmeijer (2000) for analyses.

2Gee inter alia Nelson and Startz (1990) or Staiger and Stock (1997) for analyses of weak
instruments biases in general, and Blundell and Bond (1998) for a discussion in the context of



Alternative hypothesis tests with better finite sample properties are therefore
of considerable interest in the panel data context. We consider two potential reme-
dies for the standard two-step Wald test, and a range of alternative test statistics
that have recently been proposed. One approach is to bootstrap the conventional
Wald test. Bootstrapping for GMM is not standard, since the population mo-
ment conditions do not hold exactly in the bootstrap samples. Hall and Horowitz
(1996) propose a recentering procedure to account for this, whilst Brown, Newey
and May (1999) propose drawing bootstrap samples with a reweighting of the
original observations. We consider these bootstrap methods for Wald tests based
on both one-step and two-step GMM estimators. The second approach constructs
the Wald test using a more accurate asymptotic approximation to the distribution
of the two-step GMM estimator, which accounts for the presence of estimated pa-
rameters in the weight matrix. Such a correction for linear GMM estimators has
recently been developed by Windmeijer (2000).

We compare these variations on the Wald test to the LM test, and to three
criterion-based tests. The LM test exploits the restrictions under the null hy-
pothesis to reduce the number of estimated parameters used to construct the
weight matrix. Criterion-based tests compare minimised values of the estimator’s
criterion function, or equivalently tests of overidentifying restrictions, for the re-
stricted and the unrestricted models. Hanson, Heaton and Yaron (1996) propose
such a test based on the continuously updated GMM criterion; Imbens, Spady
and Johnson (1998) propose such a test based on exponential tilting parameters;
whilst Bond, Bowsher and Windmeijer (2001) consider such a test based on the

standard two-step GMM criterion.

dynamic panel data models.



We consider the finite sample properties of these tests for simple linear restric-
tions in dynamic panel data models estimated using linear moment conditions.
We consider both a simple AR(1) model with individual effects, and a design
with predetermined regressors. In all cases our simulations confirm the poor per-
formance of the standard two-step Wald test. The standard one-step Wald test
typically provides a more reliable basis for finite sample inference. The corrected
version of the two-step Wald test is found to have similar finite sample properties
to this one-step test. Both these Wald tests have good size properties except in
cases where the GMM estimator is subject to substantial finite sample bias, or
where its small sample distribution becomes distinctly non-normal. The boot-
strapped one-step Wald test, the LM test and the criterion-difference test based
on the two-step GMM criterion can provide more reliable finite sample inference
in cases where these Wald tests have modest size distortions due to small sample
biases in the GMM estimators. The LM test performs very well except when
identification is weak, whilst this simple criterion-based test appears to have the
best size properties in the case of weak instruments. Bootstrapped versions of the
two-step Wald test can be severely undersized in these overidentified panel data
models, where the optimal weight matrix can be poorly estimated.

The paper is organised as follows. Section 2 reviews GMM estimators and
distribution results; Section 3 reviews the standard Wald test, and discusses a
finite sample correction for the asymptotic variance and bootstrapping procedures;
Section 4 considers the LM test and Section 5 considers the criterion-based tests;
Section 6 discusses related literature; Section 7 outlines our simulation designs;

Section 8 presents our main Monte Carlo results and Section 9 concludes.



2. GMM

Consider the moment conditions

E g (Xi, Bo)] = Eg: (6o)] = 0,

where ¢ (.) is a vector of order ¢, X is a vector of observed variables fori = 1,..., N,
and [y is a parameter vector of order k. Throughout, we assume that £ < q. The

GMM estimator 3 for B then minimises®
1Y ' 1Y
1) = |5 L0 Wy |5 3200,
with respect to 3; where Wy is a positive semidefinite weight matrix which satisfies
plimy_ .. Wy = W, with W a positive definite matrix. Regularity conditions
are assumed such that limpy_,. % SN 9:(B) = Elg; (B)] and \/_IN SN g (Bo) —

N(0,V). Let I' (8) = E[0g:(B) /05] and 'y = I" (0y), then \/N<B— ﬂo> has a
limiting normal distribution, v N (B — ﬁo) — N (0, Vi), where

Viy = (ToWTo) ' ToW W, (T, W) . (2.1)

An efficient two-step GMM estimator, denoted Bg, for a given set of moment
conditions, is based on a weight matrix that satisfies plimy_, . Wy = U1 with

Vv = (Fglll_lFo)_l. A weight matrix that satisfies this property is given by

-1

i () = (5 0 ()0 (3 ) 2.2

where Bl is a consistent one-step GMM estimator for 3, based on some known

weight matrix Wy . Notice that Wy (31> thus depends on estimated parameters.

3See Hansen (1982).



Denote g (8) = & X' g (8). The standard test for overidentifying restric-

tions is based on the minimised GMM criterion, given by
J (32) =9 (Bz)/ Wx (Bl) g (52) )

where Bg is the efficient two-step GMM estimator. In particular the test statistic
NJ (32) has an asymptotic chi-squared distribution with ¢ — k& degrees of freedom
when the moment conditions are valid. We refer to this as the Sargan test in the
sequel (see Sargan (1958, 1988)).

We will consider GMM estimators in panel data models where all the moment

conditions used are linear in the parameters. Defining

97 (B)

C =55

one-step and two-step linear GMM estimators then satisfy

Bi—0B = - (C/WNC)A C'Wng (fo)

~ ~ —1 ~

Bo—PFo = — (C/WN <ﬁ1) C) C'Wy (ﬁl) g (Bo)
and the asymptotic variances are consistently estimated by

1

@ (f) = 5 (CWyC) T CWWR' (B) WaC (CWNC)
@i (3) = —(cwy () o) (2.3)
N

3. Wald Test

The standard Wald test for testing r linear restrictions of the form r (5y) = 0 is

calculated as

A~

Wald = r (3)' (Rvar (3) R) ™ r (),
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where R = Or () /03, and has an asymptotic x? distribution under the null.
Based on the two-step GMM estimator, B = Bg, and using its conventional asymp-
totic variance estimate, var (Bg), the Wald test has often been found to overreject
correct null hypotheses severely compared to its nominal size. This can occur
even when the estimator has negligible finite sample bias, due to the fact that the
estimated asymptotic standard errors can be severely downward biased in small
samples (see for example Arellano and Bond (1991) in the case of linear panel data
models). In this section we discuss two approaches to remedy this problem. The
first is to use a finite sample correction to the estimated asymptotic variance of
the two-step GMM estimator, as proposed by Windmeijer (2000). The second is
to use bootstrap methods as developed for GMM estimation by Hall and Horowitz
(1996) and Brown, Newey and May (1999).

3.1. A Finite Sample Correction for the Asymptotic Variance

Windmeijer (2000) proposed a finite sample correction to the estimated asymp-
totic variance of the two-step GMM estimator that accounts for the extra varia-
tion of the estimator due to the presence of estimated parameters in the efficient
weight matrix, Wy (Bl) This variation is neglected in the conventional asymp-
totic variance expression (2.3), but has a non-negligible effect on the distribution
of the estimator in sample sizes that are typically encountered in practice. Ac-
counting for this variation yields an improvement in the order of the asymptotic
approximation in the case of linear GMM estimators.

In particular, the linear two-step GMM estimator satisfies

Bo—fo=—(CWx () C) Wy (B) 7 (50).



which depends on the one-step estimator 51 via the weight matrix Wy (31) A

Taylor series expansion of 3, — 3y around (3; = [y results in

Bo—fBo = — (C'Wy (Bo) C)_l C'Wi (Bo) 7 (o) (3.1)

— Goarv(n) (B = Bo) + 0 (N72)

where
-1

1 N
Wy (Bo) = (ﬁ > 9i (Bo) gi (ﬁo)/>
i=1
and Gg, wy (%) 18 @ k X k matrix with its s-th column given by

Gaaialsl = 55 [(CWn (B)C) " CWa (9)7 (0]

= A (Bo) p(Bo) — Aas (Bo),

where
A (G) = €Wy (30 €)W () 2wy () 0
p(Bo) = (C'Wi (Bo)C) " C'Wi (5o)F (Bo)
@@»:ammmm*mm%ﬁ%%QMW%W%»

and

mﬂ+mm%ww'

90

The term Gg, wy (50 (Bl — ﬁo) is of order O, (N™!), and incorporating it in
the estimate of the variance of Bg will improve the accuracy of the approximation
in finite samples. The first term of Gg, wy (5[ 8], A1s (o) p (Go), is a function
of p(6y) which is the bias of an infeasible GMM estimator that uses an efficient
weight matrix that is based on the true parameters (3;. This bias tends to be small

and will generally not grow with the number of moment conditions, see Newey and
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Smith (2000). The second term, Ay (o), will in general increase with the number
of moment conditions and therefore dominate the bias correction. G, wy (80)[- 8|

can thus be estimated by G )[, s] which is given by

E27WN (El
oWy (8)

G5y ()l 51 = = (C'Wv (1) ) owy (B) —35.

|5, Wn (Bl) g (BQ) -

A feasible small sample bias corrected estimate of the variance of BQ is then ob-

tained as
var. (BQ) = % (C,WN (Bl) C>_1 + G,@,WN(,@)@ (Bl) G,,Z7’\2,WN(E1) (32)

1 , ~ -1 , ~ -1,
_N <GB27WN(31) (C Wy <ﬁ1> C) + (C Wy (ﬁl) C) G§27WN(§1)> '
This is used in place of the conventional var (Bg) to construct the corrected two-

step Wald statistic.
3.2. Bootstrap

As bootstrap methods for GMM are not standard when the model is overidenti-
fied, ¢ > k, Hall and Horowitz (1996), and Brown, Newey and May (1999) have
developed procedures to bootstrap the distribution of test statistics, like the Wald
test, in the GMM context. These bootstrap methods improve finite sample infer-
ence by reducing the error in the rejection probability of the test statistic.! In
principle bootstrapping can reduce size distortions in the asymptotic Wald tests
that are due to finite sample biases in the GMM estimators, as well as those that
are due to finite sample bias in the conventional asymptotic variance matrix.
The Hall and Horowitz (1996) procedure samples the observations (X;) with re-

placement from the original sample. As the model is overidentified, the population

4For a comprehensive review of the bootstrap method, see Horowitz (2001).



moment conditions are not exactly matched by the sample moment conditions,
and the bootstrap will not provide asymptotic refinements for the rejection prob-
abilities of the Wald test. By recentering the moment conditions in the bootstrap
sample, this problem is overcome. Let E° denote the expectation relative to the

distribution of the bootstrap sample conditional on the original sample. Then
B (g0 (3) -7 (3)) =0,

where i® denotes the index in the bootstrap sample and, as before, g(ﬁ) =

% >N g (B) The GMM estimator in the bootstrap sample minimises

%i (90 (8) =7 (B)) Wy 3 (90 (9) -7 (3)).

with 5 = Bl for the one-step GMM estimator in the bootstrap sample, and B = BQ
for the two-step estimator, and the weight matrix specified accordingly.

Brown, Newey and May (1999) propose instead to resample the data with
weighting to ensure that the moment conditions hold in the weighted sample.
These weights are obtained from an empirical likelihood procedure. Consider the
criterion function that corresponds to the empirical likelihood estimator developed

in Owen (1988). The probability weights m; solve
N q N R N
mgn Zﬁlnm subject to Zgi (ﬂg) m; =0 and Zm =1,
i=1 i=1 i=1
and are estimated as
~ 1 ~/ ) -1
7= (1479 (5))
where 74 are the estimated tilting parameters. Intuitively these measure how

much the sample has to be reweighted in order for the moment conditions to hold



exactly, and are estimated as
1Y ~
~ _ r
~ —arggnax N ;:1 In (1 + 7 g (ﬂg)) .

The bootstrap sample is then drawn with replacement from the original sample,
giving the individual observations (X;) the probability 7; of being drawn.

Using the recentering method of Hall and Horowitz (1996) or the reweighting
method of Brown, Newey and May (1999), we obtain bootstrap p-values for the
Wald test. For example for the simple test Hy : 3; = 6, the standard two-step
t-statistic is given by ¢; = (ng — 6) /\/var <B2j)- For every bootstrap sample we
calculate, té’- = (@] — ng) /1/var (@’]), where BS] is the two-step GMM estimator
in the b-th bootstrap sample. The percentile in the bootstrap distribution of
|tj| is then given by p, = & el (|t’;| > |tj|), where the indicator function
1 (]t?\ > ]tj\) equals 1 if [¢%] > [t;], 0 otherwise, and NV, is the number of bootstrap

replications. The test rejects the null at size « if p;; < a.

4. LM Test

The LM test is based on the two-step GMM estimator in the model which imposes

the restrictions r (y) = 0, and can be calculated as
LM = Ng (B) Wy (B) € (C'Wy (3) ) Wi (5) 7 (B).

where (3; and 3, are the one-step and two-step GMM estimators in the restricted
model. The LM test has an asymptotic x? distribution under the null.

It is further equivalent to a Wald test in the unrestricted model, constructed
using a two-step GMM estimator where the restrictions imposed by the null hy-

pothesis are exploited to reduce the dimension of the parameter vector that is

10



estimated to construct the weight matrix. Specifically
I =r (3) (Rvar (%) R) 7 (5s)

where 55 is a two-step GMM estimator in the unrestricted model, obtained using
the estimate of ¥~! in the restricted model, Wy (Bl), as the weight matrix. Given
this relationship, one might expect the LM test to behave like the standard Wald
test, especially with an increasing number of unrestricted parameters. However,
in our Monte Carlo simulations, the LM test does not suffer from the poor finite
sample properties found for the standard two-step Wald test. When considering
simple tests of the form H, : 3; = 6, we find that the small sample bias of
the asymptotic standard error of ng is very small in a wide variety of settings,
although the standard errors of the other parameters that were unrestricted under
the null and thus estimated in the weight matrix Wy (51) did have the usual small
sample downward bias. This happens when G, wy (5,), as defined in section 3.1, is
(approximately) a diagonal matrix, as then the small sample bias of the standard
error of the parameter to be tested will automatically be corrected by imposing
the fixed value of this parameter when estimating the optimal weight matrix based

on the restricted model.
5. Criterion-Based Tests

The standard two-step Wald test can equivalently be computed as a criterion

difference (see Newey and West (1987))
Wald = N (g (%) W (3) 3 (B5) 7 (B2) W (1) 7 (@)) :

where 51 and BQ are the one-step and two-step GMM estimators in the unrestricted

model, whereas 55 is a two-step GMM estimator in the restricted model, but using

11



as a weight matrix the consistent estimate of ¥~! based on the unrestricted one-
step GMM estimator, Wy (Bl)
The LM test can also be computed as a criterion difference
LM =N (? (Bzy Wn (51) g <B2) -3 (35), Wy (Bl) g (55)) )

where 51 and 52 are the one-step and two-step GMM estimators in the restricted
model, whereas % is, as before, a two-step GMM estimator in the unrestricted
model, but using as a weight matrix the consistent estimate of ¥~!, under the
null, based on the restricted one-step GMM estimator, Wy (51)

The criterion-based test statistic considered by Bond, Bowsher and Windmei-

jer (2001) is given by
Dry = N (? <B2)/ Wx (51) g (52) -9 (52)/ Wx (Bl) g (BQ))
- N1 (3)

Notice that Wy (51) and Wy (Bl) are both consistent estimates of U~! under the
null. Dy is the “likelihood ratio” test equivalent for GMM, see e.g. Davidson and
MacKinnon (1993, pp. 614-620), and is simply computed as the difference between
the Sargan statistics in the restricted and unrestricted models.” Intuitively, if
the restrictions are valid, then imposing them should not disturb the validity
of the overidentifying restrictions. Under the null, Dy has an asymptotic x?
distribution.5

Hansen, Heaton and Yaron (1996) proposed the use of a criterion-based test

similar to Dgy, but based on their continuously updated GMM estimator. This

SEverywhere, the instrument matrix Z is kept the same in restricted and unrestricted models.

®The Dpy statistic has recently been considered by Hansen (2000) in the context of testing
non-linear restrictions in the classical linear regression model. He shows via Edgeworth expan-
sions that the asymptotic chi-squared distribution provides a better approximation for the D gy
statistic than for the Wald statistic in that case.

12



estimator is equivalent to robust LIML and is defined as the value of 3, denoted

B°Y, that minimizes

-1

N
19 =30 (5 X0 e V) 0.
i=1
The test statistic D§Y is then defined as
Dgg - N (JCU (B’CU) _ geu (BCU)) :

where BCU and BCU are the continuously updated GMM estimators for the unre-
stricted model and the restricted model respectively. Under the null, DEY has an
asymptotic x? distribution.

The test proposed by Imbens, Spady and Johnson (1998) is based on the
empirical likelihood method. The exponential tilting estimator for §y minimises

the Kullback-Leibler information criterion

N N N
miﬂn Zm In7; subject to Zgi (B)m =0 and Zm =1.
=1 i=1 i=1

The estimated probabilities are of the form

exp (¢'g: (B))
> exp (¢'g; (6))

T (C,ﬁ) =

where ( are the tilting parameters. Again, these measure how much the sample
has to be reweighted in order for the moment conditions to hold exactly.”
Tilting parameters can be estimated conditional on the standard GMM esti-

mator of the parameters 5. The Lagrange Multiplier test statistic

NJET (Z,Bz) = NZ/RN (ZJBZ)Z

"Note that these estimated probabilities can also be used to reweight the data in the bootstrap
procedure of Brown, Newey and May (1999).

13



is a test for whether the tilting parameters, or Lagrange multipliers, are equal to
zero, where
¢ mmax In 3 exp (¢ ().
¢ N =
and

~

P (68) = [ ()0 (3) m (G 3) | [N 2o () (3) = (0.3

[0 (3) 0 (3) 7 ()

is a robust estimate of the variance of the moments. N J#T (6 , @) has an asymp-
totic x2_ distribution when the moment conditions are valid. The corresponding

criterion-based test for testing the hypothesis Hy : 7 (8y) = 0 is defined as

~

Dgg = N <5/RN (5, Bz) 5— §’RN (Q@) Z)
= N(J(CR) - I (C ).,

where Z is the estimator of the tilting parameters based on the efficient two-step
GMM estimator in the restricted model. Under the null, D£}; has an asymptotic

X2 distribution.
6. Related Literature

The finite sample behaviour of some of the test procedures described in the pre-
ceding sections has been analysed in different settings by various authors. Wind-
meijer (2000) presents Monte Carlo results for a simple linear panel data model
indicating that the finite sample correction for the variance of the linear two-step
GMM estimator works well in that context, leading to much more accurate in-

ference than the standard two-step Wald test. Hall and Horowitz (1996) do not

14



consider panel data models, but show the improvement of their bootstrap proce-
dure as compared to the usual asymptotic inference for various non-linear GMM
estimators. Brown, Newey and May (1999) do consider panel data models and
also show that their bootstrap method improves the finite sample performance
of the Wald test based on the two-step GMM estimator. Bergstrom (1997), and
Bergstrom, Dahlberg and Johansson (1997) analyse the performance of the two
bootstrap procedures for first-differenced GMM estimators in linear autoregres-
sive panel data models, and show that both methods improve on the standard
asymptotic inference for two-step GMM. These papers do not consider the case of
models with weak instruments, or additional moment conditions that are available
for equations in levels under initial conditions restrictions.

Hansen, Heaton and Yaron (1996) consider the performance of the criterion-
based test based on the continuously updated GMM estimator, D&Y, in the con-
text of non-linear Euler equations and show that this test has superior finite
sample properties as compared to the standard Wald tests based on two-step or
continuously updated GMM estimators. Imbens, Spady and Johnson (1998) fo-
cus primarily on their test of overidentifying restrictions, N.J¥T, and only briefly
consider the performance of D%}; for some specific non-linear models. Again, D%/,
outperforms the standard two-step Wald test. Bond, Bowsher and Windmeijer
(2001) study the performance of the three criterion-based tests for linear autore-
gressive panel data models and conclude that these tests have quite good finite
sample properties in this context and all three behave very similarly in the models
they consider. The Dy test then has the advantage of being extremely simple to

compute. As far as we are aware, the performance of the LM test has not been
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studied in the GMM context.
In the following sections, we present a systematic comparison of the finite
sample performance of these various test procedures for a range of dynamic panel

data models.
7. Dynamic Processes with Individual Effects

We first consider the linear first order autoregressive panel data model with indi-

vidual effects (1;)
Yit = OolYit—1 T Uit
Uig = 1 + Vit

where i = 1,..., N and t = 2,...,T, with N large and T fixed. Under the standard

assumptions
Em)=0,E(vy)=0,FE(vyn;) =0fori=1,..,Nand t=2,....,T (7.1)
E (vqvis) =0fori=1,...., N and Vt # s (7.2)

and

E (yivy) =0fori=1,..,Nand t =2,..T, (7.3)
the following (T'— 1) (T — 2) /2 linear moment conditions are valid
E [y;?*2 (Ayi — aoAyit,l)] =0fort=3,..,T, (7.4)

where y: 2 = [yi1, Yi2, ..., Yir_2); see for example Ahn and Schmidt (1995). We
call these moment conditions the DIF moment conditions, cf. Arellano and Bond

(1991). Under the additional mean stationarity assumption on initial conditions

16



the additional (7" — 2) linear moment conditions
E Ay (yi — aoyir—1)] =0for t =3,..,T (7.6)

are valid. The joint moment conditions (7.4) and (7.6) are the so-called SYS
moment conditions, cf. Arellano and Bover (1995) and Blundell and Bond (1998).

Let Z; be the matrix of instruments for observation 7, then the moment
conditions can generically be written as F [Zlw; (aw)] = 0. The efficient one-
step GMM weight matrix for the DIF moment conditions when the v; are ho-
moscedastic and not serially correlated is given by Wy = (% YN ZIH Zi)_l,
where H is a (T — 2) square matrix which has 2’s on the main diagonal, -1’s
on the first subdiagonals and zeros elsewhere. For the SYS moment conditions
there is no simple one-step efficient weight matrix, and in our simulations the
one-step weight matrix is set equal to Wy = (% >N ZgZi)il. The efficient
two-step weight matrix for both estimators under general conditions is given by
W (@1) = (& XX, Ziwi (@) wi (61)' Z;) ', with & the consistent one-step GMM
DIF or SYS estimator of a.

We also present simulation results for a multivariate dynamic panel data model

specified as

Vit = Qolit—1 + BoZi + i + Uit
Tt = PoTit—1 + ToNi + Wit

Wit = Oovit_1 + €t

The x;; series are correlated with 7; and predetermined but not strictly exoge-

nous with respect to v;. The DIF moment conditions in this model are the

17



(T'—-1)(T'=2)/2)+ (T'(T — 1) /2) moment conditions

E {yf_z (Ayir — a0Ayiz—1 — ﬂOAsz’t)} = Ofort=3,...T
E [@-1 (Ayit — Ayt — ﬂOAsz’t)} = Ofort=3,..,T,
where zi7! = [z;1, 40, ..., it—1]. The additional (T — 2) + (T — 1) moment condi-
tions used by the SYS estimator are given by
E Ay 1 (yir — ao¥ir—1 — Poxir)] = Ofort=3,..,T

E [Aﬂcz’t (yz't — QoYit—1 — ﬂoxit)] = Ofort=2,..,T.

8. Monte Carlo Results

8.1. Basic results

In Table 1 and Figure 1 we present some basic Monte Carlo results for the AR(1)

panel data process. The covariance stationary data generating process is

Yit = QoYir—1+ 1 + Vit
i ~ N(07 1) ;o Uig ™~ N(Oa 1)

i 1
i1 = i e~ N0, ——=].
yit 1—040jLZS c < 1—04%)

The additional moment conditions (7.6) are satisfied in this design, and we con-
sider inference based on both the DIF moment conditions alone, and on the com-
bined SYS moment conditions.® The initial conditions and error components are
all normally distributed. The sample size is N = 100, T" = 6, and we report

results based on 10,000 replications. The value considered for ag is 0.4, which

8 Additional linear moment conditions that depend on both homoscedasticity and covariance
stationarity are also available in the design used here; see, for example, Ahn and Schmidt (1995)
and Kruiniger (2000). We do not consider inference based on these estimators, as they are less
commonly used in applied work.
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is well below the range where problems associated with weak identification are
expected to be serious. We consider tests of the null hypothesis Hy : ag = 0.4.
Table 1 presents the estimation results for both one-step and two-step versions
of the SYS and DIF estimators, and Figure 1 presents p-value plots to compare
the actual and nominal size properties of the various test statistics; see Davidson
and MacKinnon (1996). Figure 1a shows the results for the various Wald statistics
based on the SYS estimator: the standard asymptotic Wald test based on the one-
step GMM results, W7; the standard asymptotic Wald test based on the two-step
GMM results, Wy; the Wald test based on the two-step estimator using the finite
sample corrected estimate of the variance matrix, Ws¢; the bootstrapped one-step
Wald test using the Hall-Horowitz method, Wi ; and the bootstrapped two-step
Wald tests, Wop g and Wognar, using the Hall-Horowitz and Brown-Newey-May
methods respectively. The number of bootstrap replications, N, is equal to 500.
Figure 1b shows the corresponding results for the LM test, LM, and for the three
criterion-difference tests, Dyy, DEY and DEL based on the standard two-step
GMM criterion, the continuously updated GMM criterion and the exponential
tilting criterion respectively. Results for the standard one-step Wald test, W7,
are reproduced here to facilitate comparisons. Figures 1c and 1d then show the
p-value plots for the same sets of test statistics based on the results for the DIF

estimator.
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Table 1. Estimation Results for AR(1) Model, N =100, T'= 6

SYS DIF
one-step two-step one-step two-step

coeff st dev  coeff st dev coeff st dev  coeff st dev

rmse st err rmse st err rmse st err rmse st err

Qg st errc st errc
0.41] 0.389 0.096 0.403 0.081 0.364 0.108 0.366 0.118
0.097 0.094 0.081 0.058 0.114 0.106 0.122 0.096
0.079 0.116

Results are based on 10,000 replications
st err is the mean of the estimated asymptotic standard errors
st errc is the mean of the estimated standard errors corrected for small sample bias

Table 1 shows that with N = 100,77 = 6 and «g = 0.4 there is almost no
bias found for the two-step GMM estimator using the SYS moment conditions.
There is a small downward bias, around 3% of the true value of «q, found for
the one-step version, which also has a standard deviation around 19% higher
than the asymptotically efficient estimator based on the same moment conditions.
However whilst the finite sample standard deviation of the one-step estimator is
well estimated by the mean of its usual asymptotic standard errors, this is not the
case for the two-step estimator, where the mean of the uncorrected asymptotic
standard errors has a downward bias of around 28%. The finite sample correction
discussed in Section 3.1 virtually eliminates this bias. The pattern of results for
the GMM estimators using only the DIF moment conditions is broadly similar.
These estimators have a downward bias around 9% of the true value of ag, and a
standard deviation around 40% higher than the two-step SYS estimator. Again
the corrected standard error provides a much more accurate guide to the finite
sample standard deviation of the two-step version than does the usual asymptotic

standard error, although the downward bias in the latter, around 19%, is smaller
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here than for the SYS estimator, which is based on more moment conditions.
One further feature of these results is that the one-step GMM DIF estimator,
which uses an optimal weight matrix in this simulation design, has a finite sample
standard deviation which is around 8% smaller than the asymptotically equivalent
two-step version.

Figure 1la confirms that inference based on the standard two-step Wald test
could be very misleading in this context. At a nominal size of 5%, for example,
this test falsely rejects the correct null hypothesis that ag = 0.4 in around 17%
of the replications. In contrast, despite the greater bias of the one-step GMM
SYS estimator, inference based on the standard one-step Wald test is much more
reliable, with a rejection frequency of around 6% at the 5% nominal size. This
pattern is typical of a wide range of experiments that we have considered, a
selection of which are reported below. The poor performance of the conventional
two-step Wald test here is principally due to the downward bias in the usual
asymptotic standard errors, which do not account for the estimation of parameters
used to construct the optimal two-step weight matrix. We have seen in Table
1 that there is almost no bias in the mean of the two-step estimates in this
experiment, and Figure 4a below confirms that the finite sample distribution
of this estimator here is symmetric and approximately normal. Consequently
we would expect that using the corrected estimates of the standard errors to
construct a Wald statistic based on the two-step GMM estimator should produce
a considerable improvement in the size properties of the test, and this is indeed
what we find in the results of this experiment. The corrected two-step Wald

statistic (W) has rejection frequencies that are very close to those of the standard
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one-step Wald statistic (I#7). Again this pattern is typical of a wide range of
experiments in which we found the corrected two-step Wald test to have size

properties similar to, or marginally better than, the standard one-step Wald test.

rejection frequency

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
rejection frequency

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

L L L L L L L L
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.00 0.02 0.04 0.06 0.08 Q.10 0.12 0.14 0.16

nominal size nominal size

Fig la. P-value plot, ag = 0.4, SYS, T'=6  Fig 1b. P-value plot, ag = 0.4, SYS, T =6

rejection frequency

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
rejection frequency

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

L L L L L L L L
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.00 0.02 0.04 0.06 0.08 Q.10 0.12 0.14 0.16

nominal size nominal size

Fig 1c. P-value plot, ag = 0.4, DIF, T'=6  Fig 1d. P-value plot, ag = 0.4, DIF, T'=6

22



Turning to the bootstrapped versions of the Wald tests, Figure 1a shows that
the Hall-Horowitz procedure (Wjp ) does extremely well in correcting the small
size distortion found for the standard one-step Wald test in this experiment. Nei-
ther the Hall-Horowitz nor the Brown-Newey-May procedures are so successful for
the two-step Wald test, with both the bootstrapped two-step Wald tests tending
to reject the null hypothesis too infrequently relative to their nominal size. This
pattern was again common in the experiments we considered, and some cases in
which the poor performance of the bootstrapped two-step Wald tests becomes
more extreme will be illustrated in later sections.

Figure 1b shows that the LM test also performs well in terms of size in this
experiment. We found this to be the case in all experiments where the parame-
ter of interest is well identified; the exception being the ‘weak instruments’ case
considered in Section 8.1.2 below. The three criterion-based tests are also found
to have quite good size properties in this experiment, with rejection frequencies
of around 6% at the 5% nominal size.

The results discussed above, based on the system GMM estimator which has
little bias in this design, have tended to be relatively favourable to the standard
one-step Wald test. We might expect the bootstrapped, LM or criterion-based
tests to offer more improvement in settings where there is more bias present in
the underlying GMM estimator. Figures 1c and 1d illustrate this by considering
the same test statistics based on the first-differenced GMM estimator in the same
experiment. As we saw in Table 1, this estimator does have a larger finite sample
bias in this context. Again the standard two-step Wald test has a much greater

size distortion than the standard one-step Wald test. In this case, though, we find
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that there is a small improvement offered by the corrected two-step Wald test, and
a considerable improvement offered by either the bootstrapped one-step Wald test,
the LM test, or the three criterion-based tests, compared to the size performance
of the standard one-step Wald test. In this experiment the bootstrapped two-step
Wald tests also have rejection frequencies that are very close to the nominal size,
although we would caution that this result was not typical of our findings for the

bootstrapped two-step Wald tests.
8.1.1. Variations: 7' = 8 and non-normal errors

Table 2 and Figure 2 present the findings for two further experiments where inter-
esting results were obtained. The first of these considers the effect of increasing
the time dimension of the panel from 7' = 6 to T = 8, keeping N = 100 and
ag = 0.4. Noting that the number of moment conditions increases at the rate
T2, this approximately doubles the number of moment conditions used by the
SYS estimator from 14 to 27, whilst holding constant the cross-section dimension
of the panel on which the large N, fixed T" asymptotic approximations depend.
The second variation maintains the N = 100,7 = 6, ap = 0.4 combination used
in the previous section, but introduces non-normal disturbances into the AR(1)
process. In particular we here draw the time-varying errors (v;) from a skewed
X3 distribution, centred to have mean zero and scaled to have variance one. That

is, we replace the standard normal random variable by
Vi ~ (X% - 1) /V2.

Otherwise in both cases the design is identical to that described previously.

To conserve space we focus here on the results for the GMM estimators based
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on the combined set of SYS moment conditions. Comparing Tables 1 and 2, we
see that adding two additional years of data to the panel reduces the finite sam-
ple standard deviation of both one-step and two-step SYS estimators by around
22%, although there is now more finite sample bias, particularly for the one-step
estimator. The downward bias in the conventional asymptotic standard errors for
the two-step estimator increases to around 40%, although both the conventional
one-step asymptotic standard errors and the corrected two-step standard errors
continue to provide reliable estimates of the finite sample standard deviations for

the respective estimators.

Table 2. Estimation Results for AR(1) Model, N = 100

SYS
T=28 T = 6, x3 errors
one-step two-step one-step two-step

coeff st dev  coeff st dev coeff st dev  coeff st dev

rmse st err Tmse st err rmse st err  rmse st err

Qp st errc st errc
041 0374 0.076 0.391 0.063 0.387 0.093 0.400 0.075
0.078 0.074 0.062 0.037 0.094 0.087 0.075 0.043
0.061 0.071

Results are based on 10,000 replications
st errc is the estimated standard error corrected for small sample bias
st errc is the mean of the estimated standard errors corrected for small sample bias

Figure 2a shows that the corrected two-step Wald test improves on the size
performance of the standard one-step Wald test in this experiment, and the Hall-
Horowitz version of the bootstrapped one-step Wald test does extremely well again
here. However the striking feature of these results is the size distortion found for
the bootstrapped versions of the two-step Wald test, where we obtain rejection

frequencies of around 1% at the 5% nominal size. Figure 2b shows that the LM test
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again improves on the size performance of the standard one-step Wald test. The
criterion-difference tests based on the standard GMM and continuously updated
GMM criteria again perform quite well,” although that based on the exponential
tilting criterion is found to be more sensitive to the increase in the number of

moment conditions used.
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9 As was the case with T = 6 in the previous section, these two criterion-difference tests were
found to have better size properties than the standard one-step Wald test for results based on
the DIF GMM estimator at 7' = 8.
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The introduction of skewed, non-normal errors also results in a more pro-
nounced downward bias in the asymptotic standard errors for the two-step esti-
mator. Again the one-step asymptotic standard errors and the corrected two-step
standard errors perform well. Figure 2c shows a similar pattern to that found in
Figure 2a, with the bootstrapped one-step Wald test performing well, but with
the bootstrapped two-step Wald tests under-rejecting relative to their nominal
size. Figure 2d shows that the LM test offers a considerable improvement on the
standard one-step Wald test in this case. The criterion-based tests are also found
to be quite robust to this form of non-normality, with the simple test based on
the standard GMM criterion having rejection frequencies similar to the standard

one-step Wald test at conventional levels of significance.
8.1.2. Weak identification: oy = 0.8

Table 3 and Figure 3 consider the reliability of these test procedures in a case
where the identification of the parameter of interest becomes weak. Specifically
we consider the covariance stationary AR(1) process as described previously, with
N = 100 and T" = 6 and normally distributed error components, but we now
increase the true value of the parameter o to 0.8. This is in the region where
Blundell and Bond (1998) reported very poor finite sample properties for the
GMM estimators based on the DIF moment conditions, essentially because lagged
levels of the series provide very weak instruments for subsequent first-differences
as the AR(1) process approaches the random walk (o = 1) case.

Table 3 confirms the serious downward bias and imprecision previously re-
ported for the DIF GMM estimators in this context. As stressed by Blundell and

Bond (1998), the SYS GMM estimators have comparatively small finite sample
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biases, around 2% of the true value of the parameter, and much greater precision.
Of more interest here, we find that both the conventional asymptotic standard er-
rors for the one-step estimators, and the corrected standard errors for the two-step
estimators, continue to provide virtually unbiased estimates of the respective finite

sample standard deviations, for both the SYS and the DIF moment conditions.

Table 3. Estimation Results for AR(1) Model, N =100, T'= 6

SYS DIF
one-step two-step one-step two-step

coeffl st dev coeff stdev coeff st dev coeff stdev
rmse st err rmse st err rmse st err rmse sterr

Q st errc st errc
0.8 0.819 0.100 0.818 0.096 0.579 0.237 0.553 0.279
0.102 0.097 0.098 0.053 0.324 0.228 0.373 0.205
0.094 0.272

Results are based on 10,000 replications
st err is the mean of the estimated asymptotic standard errors
st errc is the mean of the estimated standard errors corrected for small sample bias

Not surprisingly, both one-step and two-step Wald tests based on the seri-
ously biased DIF estimators provide unreliable inference, as seen in Figure 3c.
The bootstrapped one-step Wald test using the Hall-Horowitz procedure provides
little improvement here; and the bootstrapped two-step Wald tests also remain
considerably over-sized. Figure 3d shows that the LM test also offers only a small
improvement over the standard one-step Wald test in this experiment; like the
bootstrapped one-step Wald test, the LM test seems to be subject to a serious
size distortion when the parameter of interest is only weakly identified. Two of
the criterion-based tests are found to have comparatively small size distortions

here. However we should note that this is likely to be of somewhat limited use
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for applied research; as the parameter of interest is estimated so imprecisely using
these moment conditions, well-behaved test procedures will simply tell us that the

range of values for the parameter that cannot be rejected is extremely wide.
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Perhaps more surprisingly, we find that both one-step and two-step Wald tests
based on the much less biased SYS estimators have similarly poor size properties
to those based on the DIF estimators, as seen in Figure 3a. The problem here can
be traced to the shape of the finite sample distribution of the SYS estimator in the
ag = 0.8 case. Figure 4 shows the distribution of the two-step GMM estimators
based on the SYS moment conditions in our experiments, at both ay = 0.4 and
ap = 0.8.1Y Whilst in the former case the distribution of the parameter estimates
is symmetric around the mean of 0.4 and approximately normal (Figure 4a), in the
latter case the distribution is highly skewed, with the mode being rather higher
than the mean (Figure 4b). Thus whilst the corrected asymptotic approximation
appears to provide a good guide to the first two moments of this distribution, as
we saw in Table 3, it provides a poor guide to the higher moments. Inference
based on the Wald tests relies on the asymptotic normality of the estimator, and

hence is inaccurate in the ap = 0.8 case. Perhaps related to this, we find that the

10 A similar pattern was found for the one-step GMM estimator.
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bootstrapped one-step Wald test offers no improvement over the standard one-step
Wald test in this context. Here we find that the Brown-Newey-May version of the
bootstrapped two-step Wald test performs quite well, but would caution against
relying on this procedure in general. Perhaps more usefully, Figure 3b shows that
the LM test based on the SYS estimator has rejection frequencies very close to
nominal size in this experiment. Except for the case of weak instruments shown
in Figure 3d, the LM test is found to have good size properties in all the cases
we have considered. The three criterion-based tests also provide a considerable
improvement on the standard one-step Wald test in this experiment, although as
was the case for the DIF estimator, the version based on the continuously updated

GMM criterion performs relatively poorly in this group.
8.2. A Multivariate Dynamic Model

All the designs considered in the previous section contained only one parameter
of interest (), and the null hypothesis being tested provided a complete spec-
ification of the parameter vector. As a result, in formulating the LM statistic
as a Wald test using a two-step GMM estimator where the restrictions imposed
under the null are used to construct the weight matrix (see Section 4), we have
a seemingly very special case in which no parameters need to be estimated to
obtain this weight matrix. In this context it may be unsurprising that the LM
test avoids the size distortion found for the standard two-step Wald test, which
is clearly related to neglecting the estimation of such parameters in the usual
derivation of the asymptotic variance matrix. Thus it is important to consider
the performance of the LM test in designs with a higher dimensional parameter

vector, and particularly in relation to hypothesis tests that leave some of these
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parameters unrestricted.!! More generally it is useful to check that the findings
presented previously are not special to the simple AR(1) model.
In this section we therefore present some Monte Carlo results for a multivariate

dynamic model specified as:

Yo = Qoli—1 + BoTi + i + vy
Tig = PoTi—1+ TN + Wi

wip = Oovi_1 + i

The parameters were chosen to be ag = 0.5, By =1, po = 0.5, 79 = 0.1, 6y = 0.1,
n; ~ N (0,1), vy ~ N (0,1), g4 ~ N (0,1), N =100 and 7' = 6. We focus on the
estimation of the parameters (ap, Jp) in the first equation, and simple hypothesis
tests of the form Hy : ap = 0.5 or Hy : By = 1 in this setting. The x;; series are
correlated with 7; and predetermined but not strictly exogenous with respect to
v in this equation. The choice of parameters is again intended to avoid serious
problems of weak identification. Note that the inclusion of the predetermined
x4 variable in the model to be estimated again has the effect of approximately
doubling the number of moment conditions used by the SYS GMM estimator,
compared to the simple AR(1) models considered previously with N = 100 and
T = 6.

Table 4 presents the estimation results for the SYS GMM estimators, and
Figure 5 presents p-value plots based on 10,000 replications. These estimators
have little bias, and both the standard one-step asymptotic standard errors and

the corrected two-step standard errors perform very well in this design. Figures

1 The null hypothesis tested by the familiar ‘t-ratio’ in a multivariate model provides a leading
example of this situation.
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5a and 5c show the rejection frequencies for the various Wald tests of correct null
hypotheses concerning ay and [y respectively. Both Figures have the familiar
pattern, with the standard two-step Wald test seriously over-rejecting and the
bootstrapped two-step Wald tests under-rejecting relative to their nominal size.
The corrected two-step Wald test performs better than the bootstrapped versions,
particularly in Figure 5c, with similar size properties to the standard one-step
Wald test; whilst the bootstrapped one-step Wald test performs very well in both
cases. Notice that by construction this is a design in which the GMM estimators
have little bias, so that the size distortion of the standard one-step Wald test is

already small.

Table 4. Estimation Results for multivariate model, N = 100, T'= 6

SYS
o B
one-step two-step one-step two-step
coeff st dev coeff st dev coeff st dev coeff st dev
rmse st err rmse st err rmse st err rmse sterr
Qg st errc o st errc
0.5 0.503 0.057 0.512 0.052 1.0 0.999 0.086 0.998 0.082
0.058 0.056 0.054 0.036 0.086 0.084 0.082 0.060
0.052 0.080

means and standard deviations of 10,000 replications
st err is the mean of the estimated asymptotic standard errors
st errc is the mean of the estimated standard errors corrected for small sample bias
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Figures 5b and 5d show the rejection frequencies for the LM test and the
criterion-based tests in the same experiment. The simple criterion-difference based
on the standard two-step GMM criterion performs well in both cases, whilst the
sensitivity of the results for the exponential tilting criterion to an increase in the
number of moment conditions, noted in Section 8.1.1, is again apparent here.

Perhaps of most interest is the robustness of the good size performance of the
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LM test to settings where parameters used to construct the weight matrix are
left unrestricted by the null hypothesis, and therefore need to be replaced by
consistent estimates in order to construct the LM test. Our suspicion was that
the LM test would perform much less well in these cases, but happily that does
not seem to be the case. The explanation for this convenient robustness lies in
the approximate block diagonality property of the finite sample correction for the
asymptotic variance matrix of the standard two-step GMM estimator, discussed
in Section 4. As a result the need to estimate parameters that are not specified as
part of the null hypothesis has little effect on the performance of the LM test.'?
Indeed in many cases the LM test seems to have better finite sample properties
than the feasible version of the correction to the standard Wald test, implemented

as Wy in our simulations and discussed in Section 3.1.
8.3. Summary of Size Properties

Our results on the size properties of these alternative test statistics can now
be summarised. In cases where the moment conditions used provide reasonable
identification of the parameters of interest, or where the instruments are not weak,
then the nominal size of the LM test provides an accurate guide to its rejection
frequency in samples of the size considered here. This was found to be the case in
all the experiments considered, except for the weak instruments example in Figure
3d. In almost all these cases, the bootstrapped version of the one-step Wald test,
using the Hall-Horowitz recentering method, improved on the accuracy of the

asymptotic one-step Wald test, and provided rejection frequencies very close to

12We confirmed that the LM test continued to perform well in designs with many additional
explanatory variables, and was not sensitive to the correlation structure between these covariates.
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the nominal size. This was particularly the case where small size distortions in
the standard one-step Wald test were attributable to small finite sample biases in
the GMM estimator, as in Figures 1a, 1c, 2a, 2c¢, 5a and 5c. The exception was
in the results based on the SYS estimator at ap = 0.8 (Figure 3a), where the size
distortion in the standard one-step Wald test was attributable to the distinctly
non-normal finite sample distribution of the estimator.

The performance of the bootstrapped versions of the two-step Wald test was
comparatively disappointing, with their nominal size seriously overstating their
finite sample rejection frequencies in cases such as Figure 2a, 2c and 5c¢. The fact
that the Hall-Horowitz procedure works well for the one-step Wald test in these
cases suggests that the problem is not with the method of bootstrapping but rather
is related to the need to estimate a weight matrix on each replication in order to
implement bootstrapping for the two-step Wald test.'® Unfortunately this would
suggest that the bootstrapped two-step Wald tests will be least reliable in the
same settings as the asymptotic two-step Wald test, where the size distortion is
also related to the estimation of the weight matrix. Our simulations suggest that
the feasible version of the finite sample correction suggested by Windmeijer (2000)
will often result in more reliable inference based on the two-step GMM estimator
than these approaches to bootstrapping, at least in the context of these estimators
for dynamic panel data models.'* This corrected two-step Wald test is generally
found to have similar size properties to the standard one-step Wald test. Both the

bootstrapped one-step Wald test and the LM test can provide more substantial

13This has been noted previously in a different setting by Altonji and Segal (1996).

14Bootstrapped versions of the corrected two-step Wald test were found to have similar prob-
lems to those reported for the bootstrapped versions of the standard two-step Wald test. Again
this seems likely to be related to the need to estimate the optimal weight matrix in each repli-
cation of the bootstrap.
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improvements, as illustrated in Figures 2c and 2d. However none of these test
procedures are found to have good size properties in the weak instruments case
illustrated in Figures 3¢ and 3d.

Of the three criterion-based tests considered, the simplest version based on
the standard two-step GMM criterion was found to be the most robust in our
experiments. The version based on the exponential tilting criterion was relatively
sensitive to increasing the number of moment conditions (Figures 2b, 5b and 5d),
whilst the version based on the continuously updated GMM criterion was rela-
tively poor in the case of weak identification (Figure 3d). The Dpy statistic is
extremely simple to compute and has reasonable size properties in all the ex-
periments we have considered. This test performs surprisingly well in the weak
instruments example of Figure 3d, and can at least be expected to reveal that the

parameters of interest are not estimated with any useful precision in this setting.
8.4. Power Comparisons

Having focused on the finite sample size properties of these test statistics, in this
section we briefly consider their power to reject incorrect null hypotheses in this
setting. Our intention is not to provide a comprehensive evaluation for all the
tests previously considered, but rather to check that those tests for which we have
found relatively small size distortions do not perform particularly poorly in terms

of power.
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Fig 6. Power plot, Hy : ag = 0.4, SYS

To do this we return to the basic AR(1) specification used in Section 8.1, with
N =100 and T = 6, and consider tests of the null hypothesis Hy : ag = 0.4 for
a range of true values of the parameter oy between 0.25 and 0.55.1> We focus
on the tests previously found to have reasonable size properties in a wide range
of experiments: the standard one-step Wald test, the corrected two-step Wald
test, the bootstrapped one-step Wald test, the LM test, and the simple criterion-
difference test (Dpgy) based on the standard two-step GMM criterion. Figure 6
presents the power plots for these tests based on the GMM SYS estimator, using
the critical values that are found to give a 5% rejection frequency for each test

at the value of oy = 0.4 considered in the null hypothesis.!® In this example

15Speciﬁcally we use the parameter values (0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55).
16The results are based on 5000 replications.
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we find a small improvement in power for the corrected two-step Wald test, the
LM test and the Dgy test, compared to the standard one-step Wald test, whilst
the bootstrapped one-step Wald test has very similar power to its asymptotic
counterpart. In a wider range of experiments we have found no cases in which
these alternative test statistics have lower power than the standard one-step Wald

test unless the estimator itself is subject to quite serious finite sample bias.
9. Conclusions

We study the finite sample properties of tests of linear restrictions in the context
of dynamic panel data models estimated using linear moment conditions. Our
results confirm the very poor properties of the standard asymptotic Wald test
based on the optimal two-step GMM estimator, even when this estimator has little
bias and is approximately normally distributed. This is explained by the neglect
of sampling variance in the estimated parameters used to construct the weight
matrix, which can result in serious size distortions in panels with dimensions that
are often encountered in practice.

Wald tests based on one-step GMM estimators that use a fixed weight matrix
typically provide a more reliable basis for finite sample inference. We have consid-
ered a range of alternative test procedures: bootstrapped one-step and two-step
Wald tests, an alternative two-step Wald test that uses a finite sample correction
for the asymptotic variance matrix, the LM test, and three criterion-based tests.
We find that the bootstrapped one-step Wald test using the recentering method
proposed by Hall and Horowitz (1996) works extremely well, except in cases where

the parameters of interest are only weakly identified or where the size distortion in
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the standard one-step Wald test results from the small sample distribution of the
GMM estimator becoming noticeably non-normal. In contrast the bootstrapped
versions of the two-step Wald test perform comparatively poorly, which seems to
be related to the problem of estimating the optimal weight matrix. In general
these bootstrapping procedures do not provide a reliable correction for Wald tests
based on the two-step GMM estimator in these overidentified panel data models.
The corrected two-step Wald test developed by Windmeijer (2000) often provides
more reliable inference based on the two-step GMM estimator, with size proper-
ties similar to those of the standard one-step Wald test. The LM test is found
to have smaller size distortions than the one-step Wald test in a number of our
experiments, and performs well except in the case of weak identification. The
simple criterion-difference test based on the standard two-step GMM criterion is
found to perform quite well in all the cases we have considered, and seems to
provide the most reliable inference in the case of weak instruments. The tests
based on the continuously updated or exponential tilting criteria are found to be
less robust.

In conclusion we find that the finite sample corrected two-step Wald test pro-
vides a reasonable alternative to the standard one-step Wald test. The boot-
strapped one-step Wald test, the LM test and the simple criterion-based test can
provide more reliable finite sample inference in cases where these Wald tests have

modest size distortions due to small sample biases in the GMM estimators.

40



References

1]

Ahn, S.C. and P. Schmidt (1995), Efficient Estimation of Models for Dynamic

Panel Data, Journal of Econometrics, 68, 5-28.

Alonso-Borrego, C. and M. Arellano (1999), Symmetrically Normalised
Instrumental-Variable Estimation using Panel Data, Journal of Business &

Economic Statistics 17, 36-49.

Altonji, J.G. and L.M. Segal (1996), Small Sample Bias in GMM Estimation
of Covariance Structures, Journal of Business and Economic Statistics 14,

353-366.

Arellano, M. and S.R. Bond (1991), Some Tests of Specification for Panel
Data: Monte Carlo Evidence and an Application to Employment Equations,

Review of Economic Studies 58, 277-98.

Arellano, M. and S.R. Bond (1998), Dynamic Panel Data Estimation using
DPD98 for GAUSS, http://www.ifs.org.uk/staff/steve b.shtml.

Arellano, M. and O. Bover (1995), Another Look at the Instrumental-Variable

Estimation of Error-Components Models, Journal of Econometrics 68, 29-51.

Bergstrom P. (1997), On Bootstrap Standard Errors in Dynamic Panel Data
Models, Working Paper No. 1997/23, University of Uppsala.

Bergstrom P., M. Dahlberg and E. Johansson (1997), GMM Bootstrapping
and Testing in Dynamic Panels, Working Paper 1997/10, University of Upp-

sala.

41



[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

Blundell, R.W. and S.R. Bond (1998), Initial Conditions and Moment Re-
strictions in Dynamic Panel Data Models, Journal of Econometrics, 87, 115-

143.

Bond, S.R., C. Bowsher and F. Windmeijer (2001), Criterion-Based Inference
for GMM in Autoregressive Panel Data Models, Fconomics Letters 73, 379-
388.

Brown, B.W., W.K. Newey and S. May (1999), Efficient Bootstrapping for
GMM, mimeo, MIT.

Davidson, R. and J.G. MacKinnon (1993), FEstimation and Inference in

Econometrics, Oxford University Press, New York.

Davidson, R. and J.G. MacKinnon (1996), Graphical Methods for Investi-

gating the Size and Power of Hypothesis Tests, Manchester School 66, 1-26.

Hall, P. and J.L. Horowitz (1996), Bootstrap Critical Values for Tests based

on Generalized Method of Moments Estimators, Econometrica, 64, 891-916.

Hansen, B.E., (2000), Edgeworth Expansions for the Wald and GMM Statis-

tics for Nonlinear Restrictions, mimeo, University of Wisconsin.

Hansen, L.P., (1982), Large Sample Properties of Generalised Method of

Moments Estimators, Fconometrica 50, 1029-1054.

Hansen, L.P.; J. Heaton and A. Yaron (1996), Finite-Sample Properties of
some Alternative GMM Estimators, Journal of Business € Economic Statis-

tics 14, 262-280.

42



[18]

[19]

[20]

[21]

[22]

[23]

[24]

Horowitz, J.L. (2001), The Bootstrap, in J.J. Heckman and E.E. Leamer

(eds.), Handbook of Econometrics Volume 5, Elsevier Science.

Imbens, G.W.,; R.H. Spady and P. Johnson (1998), Information Theoretic
Approaches to Inference in Moment Condition Models, Fconometrica 66,

333-357.

Koenker, R. and J.A.F. Machado (1999), GMM Inference when the Number

of Moment Conditions is Large, Journal of Econometrics 93, 327-344.

Kruiniger, H. (2000), GMM Estimation of Dynamic Panel Data Models with
Persistent Data, QMW, University of London, Dept. of Economics Working

Paper Series No. 428.

Nelson, C.R. and R. Startz (1990), The Distribution of the Instrumental Vari-
able Estimator and Its t-ratio when the Instrument is a Poor One, Journal

of Business € Economic Statistics 63, 5125-5140.

Newey, W.K. and R.J. Smith (2000), Asymptotic Bias and Equivalence of
GMM and GEL Estimators, Working Paper, MIT Department of Economics.

Newey, W.K. and K.D. West (1987), Hypothesis Testing with Efficient
Method of Moments Estimation, International Economic Review 28, T77-

T87.

Owen, A. (1988), Empirical Likelihood Ratio Confidence Intervals for a Single
Functional, Biometrika 75, 237-249.

Sargan, J.D. (1958), The Estimation of Economic Relationships using Instru-

mental Variables, Fconometrica, 26, 329-338.

43



[27] Sargan, J.D. (1988), Testing for Misspecification after Estimation Using In-
strumental Variables, in: E. Maasoumi (ed.), Contributions to Econometrics:

John Denis Sargan, Volume I, Cambridge University Press.

[28] Staiger, D. and J.H. Stock (1997), Instrumental Variables Regression with

Weak Instruments, Fconometrica 65, 557-586.

[29] Windmeijer, F. (2000), A Finite Sample Correction for the
Variance of Linear Two-Step GMM Estimators, Institute for
Fiscal ~Studies Working Paper Series No. WO00/19, London,

http://www.ifs.org.uk /workingpapers/wp0019.pdf.

44



