2,568 research outputs found

    Novel p75 neurotrophin receptor ligand stabilizes neuronal calcium, preserves mitochondrial movement and protects against HIV associated neuropathogenesis

    Get PDF
    Human immunodeficiency virus (HIV) rapidly penetrates into the brain and establishes a persistent infection of macrophages/microglia. Activation of these cells by HIV results in the secretion of soluble factors that destabilize neuronal calcium homeostasis, encourage oxidative stress and result in neural damage. This damage is thought to underlie the cognitive-motor dysfunction that develops in many HIV-infected patients. Studies have suggested that neurotrophins may protect neurons from the toxic effects of HIV-associated proteins. To better understand the pathogenic mechanisms and the neuroprotective potential of neurotrophin ligands, we evaluated neuronal damage, calcium homeostasis and mitochondrial functions after exposure of cultured rat neurons directly to HIV gp120 or to conditioned medium from human monocyte-derived macrophages treated with gp120. We then assessed the ability of a new non-peptide p75 neurotrophin receptor ligand, LM11A-31, to stabilize calcium homeostasis and prevent the development of pathology. Each toxic challenge resulted in a delayed accumulation of intracellular calcium coupled to a decrease in the rate of calcium clearance from the cell. The delayed calcium accumulation correlated with the development of focal dendritic swellings (beading), cytoskeletal damage and impaired movement of mitochondria. Addition of LM11A-31 to the cultures at nanomolar concentrations eliminated cell death, significantly reduced the pathology, suppressed the delayed accumulation of calcium and restored mitochondrial movements. The potent neuroprotection and the stabilization of calcium homeostasis indicate that LM11A-31 may have excellent potential for the treatment of HIV-associated neurodegeneration

    Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuroprotectants

    Get PDF
    Many chemotherapy drugs are known to cause significant clinical neurotoxicity, which can result in the early cessation of treatment. To identify and develop more effective means of neuroprotection it is important to understand the toxicity of these drugs at the molecular and cellular levels. In the present study, we examine the effects of paclitaxel (taxol), cisplatin, and methotrexate on primary rat neurons including hippocampal, cortical, and dorsal horn/dorsal root ganglion neuronal cultures. We found that all of these anti-cancer drugs induce substantial neurotoxicity evidenced by neurite degeneration. The neurons are capable of recovering after treatment withdrawal, but taxol exerts a biphasic effect that results in the collapse of processes days after treatment is withdrawn. After cisplatin and methotrexate treatment, we observed the degeneration of neuronal processes including the reduction of dendritic branching, length, and altered growth cone formation, indicating an abnormal arrangement of the actin cytoskeleton consistent with the involvement of Rho family small GTPases. Inhibiting RhoA downstream effector p160ROCK/Rho kinase using Y-27632, or activating p75 neurotrophin receptor (p75NTR) using non-peptide mimetic LM11A-31, were able to reverse the degeneration caused by cisplatin and methotrexate. Therefore, the neurotoxicity resulting from exposure to the anti-cancer drugs cisplatin and methotrexate can be alleviated by inhibiting Rho signaling pathway. Originally published Neurotoxicology, Vol. 29, No. 4, July 200

    Comparing mortality risk reduction, life expectancy gains, and probability of achieving full life span, as alternatives for presenting CVD mortality risk reduction: a discrete choice study of framing risk and health behaviour change

    Get PDF
    The growing rate of obesity has recently required governments to divert considerable resources in the promotion of healthy lifestyles. We explored the relative effectiveness in inducing healthy behaviour change of three different communication strategies about the benefits of an intervention that reduces the mortality risks of cardiovascular disease (CVD) and encourages respondents to embrace healthier lifestyles. We designed a Discrete Choice Experiments questionnaire to analyse the trade-off between lifestyles, defined in terms of diet and exercise, and reduction in cardiovascular disease (CVD) mortality risk. We set three ways of framing an identical benefit: (A) as a reduction in mortality risk from cardiovascular disease, (B) as an increase in months of life expectancy, and (C) as an increase in the probability of reaching an individual's full lifespan. The experiment was tailored for each subject in the sample according to his/her individual's baseline information on diet and physical activity. During the period February 2010–July 2011, we interviewed 1008 individuals in Northern Ireland, split randomly into three samples for the three CVD risk reduction frames. Considering the models' goodness of fit and significance, we conclude that the most effective way of communicating these CVD health benefits is using an increase in life expectancy, since with this frame individuals are more inclined to state that they would change to a healthier lifestyle

    Stories of Hell and Healing: Internet Users’ Construction of Benzodiazepine Distress and Withdrawal

    Get PDF
    Abstract Benzodiazepines are a group of drugs used mainly as sedatives, hypnotics, antiepileptics, and muscle relaxants. Consumption is recommended for 2 to 4 weeks only, due to fast onset of dependency and potentially distressing withdrawal symptoms. Few peer-review studies have drawn on the user experiences and language to appreciate firsthand experiences of benzodiazepine withdrawal or discontinuation syndrome. We looked extensively at patient stories of benzodiazepine withdrawal and recovery on Internet support sites and YouTube. Our analysis indicated that users employ rich metaphors to portray the psychologically disturbing and protracted nature of their suffering. We identified seven major themes: hell and isolation, anxiety and depression, alienation, physical distress, anger and remorse, waves and windows, and healing and renewal. By posting success stories, ex-users make known that “healing” can be a long, unpredictable process, but distress does lessen, and recovery can happen

    MODERN STEREOLOGICAL EVALUATION IN THE AGING HUMAN SUBSTANTIA NIGRA

    Full text link

    Nerve Growth Factor Pathobiology During The Progression Of Alzheimer\u27s Disease

    Get PDF
    The current review summarizes the pathobiology of nerve growth factor (NGF) and its cognate receptors during the progression of Alzheimerñ€ℱs disease (AD). Both transcript and protein data indicate that cholinotrophic neuronal dysfunction is related to an imbalance between TrkA-mediated survival signaling and the NGF precursor (proNGF)/p75NTR-mediated pro-apoptotic signaling, which may be related to alteration in the metabolism of NGF. Data indicate a spatiotemporal pattern of degeneration related to the evolution of tau pathology within cholinotrophic neuronal subgroups located within the nucleus basalis of Meynert (nbM). Despite these degenerative events the cholinotrophic system is capable of cellular resilience and/or plasticity during the prodromal and later stages of the disease. In addition to neurotrophin dysfunction, studies indicate alterations in epigenetically regulated proteins occur within cholinotrophic nbM neurons during the progression of AD, suggesting a mechanism that may underlie changes in transcript expression. Findings that increased cerebrospinal fluid levels of proNGF mark the onset of MCI and the transition to AD suggests that this proneurotrophin is a potential disease biomarker. Novel therapeutics to treat NGF dysfunction include NGF gene therapy and the development of small molecule agonists for the cognate prosurvival NGF receptor TrkA and antagonists against the pan-neurotrophin p75NTR death receptor for the treatment of AD

    Suppression of Immunodeficiency Virus-Associated Neural Damage by the p75 Neurotrophin Receptor Ligand, LM11A-31, in an In Vitro Feline Model

    Get PDF
    Feline immunodeficiency virus (FIV) infection like human immunodeficiency virus (HIV), produces systemic and central nervous system disease in its natural host, the domestic cat, that parallels the pathogenesis seen in HIV-infected humans. The ability to culture feline nervous system tissue affords the unique opportunity to directly examine interactions of infectious virus with CNS cells for the development of models and treatments that can then be translated to a natural infectious model. To explore the therapeutic potential of a new p75 neurotrophin receptor ligand, LM11A-31, we evaluated neuronal survival, neuronal damage and calcium homeostasis in cultured feline neurons following inoculation with FIV. FIV resulted in the gradual appearance of dendritic beading, pruning of processes and shrinkage of neuronal perikarya in the neurons. Astrocytes developed a more activated appearance and there was an enhanced accumulation of microglia, particularly at longer times post-inoculation. Addition of 10 nM LM11A-31, to the cultures greatly reduced or eliminated the neuronal pathology as well as the FIV effects on astrocytes and microglia. LM11A-31 also, prevented the development of delayed calcium deregulation in feline neurons exposed to conditioned medium from FIV treated macrophages. The suppression of calcium accumulation prevented the development of foci of calcium accumulation and beading in the dendrites. FIV replication was unaffected by LM11A-31. The strong neuroprotection afforded by LM11A-31 in an infectious in vitro model indicates that LM11A-31 may have excellent potential for the treatment of HIV-associated neurodegeneration

    ProNGF Induces p75-Mediated Death of Oligodendrocytes following Spinal Cord Injury

    Get PDF
    AbstractThe neurotrophin receptor p75 is induced by various injuries to the nervous system, but its role after injury has remained unclear. Here, we report that p75 is required for the death of oligodendrocytes following spinal cord injury, and its action is mediated mainly by proNGF. Oligodendrocytes undergoing apoptosis expressed p75, and the absence of p75 resulted in a decrease in the number of apoptotic oligodendrocytes and increased survival of oligodendrocytes. ProNGF is likely responsible for activating p75 in vivo, since the proNGF from the injured spinal cord induced apoptosis among p75+/+, but not among p75−/−, oligodendrocytes in culture, and its action was blocked by proNGF-specific antibody. Together, these data suggest that the role of proNGF is to eliminate damaged cells by activating the apoptotic machinery of p75 after injury

    Leukocyte Antigen-Related Protein Tyrosine Phosphatase Receptor: A Small Ectodomain Isoform Functions as a Homophilic Ligand and Promotes Neurite Outgrowth

    Get PDF
    The identities of ligands interacting with protein tyrosine phosphatase (PTP) receptors to regulate neurite outgrowth remain mainly unknown. Analysis of cDNA and genomic clones encoding the rat leukocyte common antigen-related (LAR) PTP receptor predicted a small, approximately 11 kDa ectodomain isoform, designated LARFN5C, containing a novel N terminal followed by a C-terminal segment of the LAR fifth fibronectin type III domain. RT-PCR and Northern blot analysis confirmed the presence of LARFN5C transcripts in brain. Transfection of COS cells with LARFN5C-Fc cDNA resulted in expression of the predicted protein, and Western blot analysis verified expression of approximately 11 kDa LARFN5C protein in vivo and its developmental regulation. Beads coated with rLARFN5C demonstrated aggregation consistent with homophilic binding, and pull-down and immunoprecipitation assays demonstrated that rLARFN5C associates with the LAR receptor. rLARFN5C binding to COS cells was dependent on LAR expression, and rLARFN5C binding to LAR +/+ hippocampal neurons was fivefold greater than that found by using LAR-deficient (-/-) neurons. Substratum-bound rLARFN5C had potent neurite-promoting effects on LAR +/+ neurons, with a fivefold loss in potency with the use of LAR -/- neurons. rLARFN5C in solution at low nanomolar concentrations inhibited neurite outgrowth induced by substratum-bound rLARFN5C, consistent with receptor-based function. These studies suggest that a small ectodomain isoform of a PTP receptor can function as a ligand for the same receptor to promote neurite outgrowth

    Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuroprotectants

    Get PDF
    Many chemotherapy drugs are known to cause significant clinical neurotoxicity, which can result in the early cessation of treatment. To identify and develop more effective means of neuroprotection it is important to understand the toxicity of these drugs at the molecular and cellular levels. In the present study, we examine the effects of paclitaxel (taxol), cisplatin, and methotrexate on primary rat neurons including hippocampal, cortical, and dorsal horn/dorsal root ganglion neuronal cultures. We found that all of these anti-cancer drugs induce substantial neurotoxicity evidenced by neurite degeneration. The neurons are capable of recovering after treatment withdrawal, but taxol exerts a biphasic effect that results in the collapse of processes days after treatment is withdrawn. After cisplatin and methotrexate treatment, we observed the degeneration of neuronal processes including the reduction of dendritic branching, length, and altered growth cone formation, indicating an abnormal arrangement of the actin cytoskeleton consistent with the involvement of Rho family small GTPases. Inhibiting RhoA downstream effector p160ROCK/Rho kinase using Y-27632, or activating p75 neurotrophin receptor (p75NTR) using non-peptide mimetic LM11A-31, were able to reverse the degeneration caused by cisplatin and methotrexate. Therefore, the neurotoxicity resulting from exposure to the anti-cancer drugs cisplatin and methotrexate can be alleviated by inhibiting Rho signaling pathway
    • 

    corecore