78 research outputs found

    Effect of P-glycoprotein modulation with cyclosporin A on cerebrospinal fluid penetration of doxorubicin in non-human primates

    Get PDF
    PURPOSE: P-glycoprotein (Pgp) is a transmembrane drug efflux pump that is expressed in multidrug-resistant cancer cells and in a variety of normal tissues, including brain capillary endothelial cells which comprise the blood-brain barrier. We studied the effects of the Pgp inhibitor, cyclosporin A (CsA), on the cerebrospinal fluid (CSF) penetration of the Pgp substrate, doxorubicin, in non-human primates. METHODS: The animals received doxorubicin alone (2.0 mg/kg i.v. over 60 min) or doxorubicin (1 mg/kg i.v. over 60 min) and CsA (loading dose 4.0 mg/kg i.v. over 2 h, followed by continuous infusion of 12 mg/kg per day over 48 h). Plasma and CSF were collected over 48 h and the doxorubicin concentration was measured by reverse-phase high-pressure liquid chromatography (HPLC) with fluorescence detection (detection limit 5 nM). A two-compartment model was fitted to the plasma concentration-time data. RESULTS: Pgp was demonstrated to be present in the epithelium of the choroid plexus by immunohistochemical methods, indicating that CSF drug penetration could be used as a surrogate for blood-brain barrier penetration. Steady state whole blood CsA concentrations, which were measured with a fluorescence-polarization immunoassay (TDX) that detects both CsA and its metabolites, ranged from 551-1315 microg/l at 24 h. The clearance of doxorubicin in four animals was reduced by 34%, 38%, 45% and 49% when given with CsA. The doxorubicin concentration in the CSF was <5 nM in all animals, both after doxorubicin alone and doxorubicin with CsA. CONCLUSIONS: The Pgp inhibitor, CsA, at a concentration that alters systemic clearance of doxorubicin, does not appear to significantly increase the CSF penetration of doxorubicin

    Synaptic and Intrinsic Activation of GABAergic Neurons in the Cardiorespiratory Brainstem Network

    Get PDF
    GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca2+ currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a framework for respiratory sinus arrhythmia as there is an increase in heart rate during inspiration that occurs via inhibition of premotor parasympathetic cardioinhibitory neurons in the NA during inspiration

    The Challenge of Developing New Therapies for Childhood Cancers

    No full text

    The Goal of Cancer Treatment

    No full text

    Clinical Trials in Childhood Cancers

    No full text

    Use of pteridine nucleoside analogs as hybridization probes

    No full text
    The pteridine nucleoside analog 3-methyl isoxanthopterin (3-MI) is highly fluorescent, with a quantum yield of 0.88, and it can be synthesized as a phosphoramidite and incorporated into oligonucleotides through a deoxyribose linkage. Within an oligonucleotide, 3-MI is intimately associated with native bases and its fluorescence is variably quenched in a sequence-dependent manner. Bend ing, annealing, binding, digestion or cleavage of fluorophore-containing oligonucleotides can be detected by monitoring changes in fluorescence properties. We developed a single step method for detecting annealing of complementary DNA sequences using 3-MI-containing oligonucleotides as hybridization probes. One of the complementary strands contains the fluorophore as an insertion and when annealing occurs, the fluorophore bulges out from the double strand, resulting in increased fluorescence intensity. We have examined the sequence dependency, optimal strand length and impact of multiple fluorophores per strand in terms of brightness and impact on the annealing process. We describe the application of this technique to the detection of positive PCR products using an HIV-1 detection system. This sequence-dependent hybridization technique can result in fluorescence intensity increases of up to 27-fold. Fluorescence intensity increases are only seen upon specific binding to bulge-generating complements, removing issues of high background from non-specific binding

    Trabectedin

    No full text
    • …
    corecore