135 research outputs found

    Abnormalities in circadian blood pressure variability and endothelial function: pragmatic markers for adverse cardiometabolic profiles in asymptomatic obese adults

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) risk, although perceived to be high, is often difficult to demonstrate in disease free (healthy) obese adults. HYPOTHESIS: Changes in circadian blood pressure variability (CBPV) and endothelial function (EF) may be early correlates of cardiometabolic disorders. METHODS: Asymptomatic men and women in 3 groups: normal weight (n = 10), overweight (n = 10) and obese (n = 15) were evaluated. Blood pressure and heart rate were recorded over 7 days: every 30 minutes during the day and every 60 minutes during the night, by automatic ambulatory monitoring. Resting EF was assessed in a fasting state between 8-10 AM by brachial ultrasound. Anthropometric and cardiometabolic indicators were measured and correlations with CBPV and EF were investigated. RESULTS: The 3 groups had (Mean(SD)) BMI: 22.6(1.6), 27(3) and 34(5) kg/m(2), respectively, weight: 64(16), 79(14), 95(16) kg and waist circumference: 79(9), 93(10), 107(13) cm. None in normal-weight or overweight groups had abnormal CBPV, while 8 of 15 obese adults had one or more CBPV abnormities (p < 0.05). Obese adults with CBPV abnormalities had elevated hs-CRP (15.3(9.3) mg/L), fibrinogen (593(97) mg/dl), fasting serum glucose (102(16) mg/dL), and cardiac risk ratios (Total-C/HDL-C: 5.2(1.9), LDL-C/HDL-C: 3.1(1.4)). Adults in the 3 respective groups who did not have CBPV abnormalities had flow-mediated brachial artery dilatation (FMD) of 0.22(0.06); 0.20(0.04), 0.23(0.02) mm over resting diameter. Obese participants with CBPV abnormalities (Mesor-hypotension, circadian hyper amplitude tension, elevated pulse pressure), had attenuated FMD at 78, 52, and 56% of resting reference diameter (means 0.18(0.07), 0.12(0.08), and 0.13(0.05) mm; p < 0.05), respectively. CONCLUSIONS: Asymptomatic obese adults with abnormal CBPV and EF exhibit unfavorable cardiometabolic profiles

    Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model

    Get PDF
    © 2015 The Authors. In addition to their fermentable dietary fiber and the soluble β-glucan fiber, oats have unique avenanthramides that have anti-inflammatory and antioxidant properties that reduce coronary heart disease in human clinical trials. We hypothesized that oat consumption will increase insulin sensitivity, reduce body fat, and improve health span in Caenorhabditis elegans through a mechanism involving the daf-2 gene, which codes for the insulin/insulin-like growth factor-1-like receptor, and that hyperglycemia will attenuate these changes. Caenorhabditis elegans wild type (N2) and the null strains sir-2.1, daf-16, and daf-16/daf-2 were fed Escherichia coli (OP50) and oat flakes (0.5%, 1.0%, or 3%) with and without 2% glucose. Oat feeding decreased intestinal fat deposition in N2, daf-16, or daf-16/daf-2 strains (P \u3c.05); and glucose did not affect intestinal fat deposition response. The N2, daf-16, or sir-2.1 mutant increased the pharyngeal pumping rate (P \u3c.05), a surrogate marker of life span, following oat consumption. Oat consumption increased ckr-1, gcy-8, cpt-1, and cpt-2 mRNA expression in both the N2 and the sir-2.1 mutant, with significantly higher expression in sir-2.1 than in N2 (P \u3c.01). Additional glucose further increased expression 1.5-fold of the 4 genes in N2 (P \u3c.01), decreased the expression of all except cpt-1 in the daf-16 mutant, and reduced mRNA expression of the 4 genes in the daf-16/daf-2 mutant (P \u3c.01). These data suggest that oat consumption reduced fat storage and increased ckr-1, gcy-8, cpt-1, or cpt-2 through the sir-2.1 genetic pathway. Oat consumption may be a beneficial dietary intervention for reducing fat accumulation, augmenting health span, and improving hyperglycemia-impaired lipid metabolism

    Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans

    Get PDF
    © 2017, Copyright © Taylor & Francis Group, LLC. Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P \u3c 0.001). Sucrose did not affect the lifespan. Glucose reduced lifespan (P \u3c 0.001). Equal amount of G&F or HFCS reduced lifespan (P \u3c 0.0001). Intestinal fat deposition (IFD) was increased at a higher dose of fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated

    The Personalized Nutrition Study (POINTS): evaluation of a genetically informed weight loss approach, a randomized clinical trial

    Get PDF
    Weight loss (WL) differences between isocaloric high-carbohydrate and high-fat diets are generally small; however, individual WL varies within diet groups. Genotype patterns may modify diet effects, with carbohydrate-responsive genotypes losing more weight on high-carbohydrate diets (and vice versa for fat-responsive genotypes). We investigated whether 12-week WL (kg, primary outcome) differs between genotype-concordant and genotype-discordant diets. In this 12-week single-center WL trial, 145 participants with overweight/obesity were identified a priori as fat-responders or carbohydrate-responders based on their combined genotypes at ten genetic variants and randomized to a high-fat (n = 73) or high-carbohydrate diet (n = 72), yielding 4 groups: (1) fat-responders receiving high-fat diet, (2) fat-responders receiving high-carbohydrate diet, (3) carbohydrate-responders receiving high-fat diet, (4) carbohydrate-responders receiving high-carbohydrate diet. Dietitians delivered the WL intervention via 12 weekly diet-specific small group sessions. Outcome assessors were blind to diet assignment and genotype patterns. We included 122 participants (54.4 [SD:13.2] years, BMI 34.9 [SD:5.1] kg/m2, 84% women) in the analyses. Twelve-week WL did not differ between the genotype-concordant (−5.3 kg [SD:1.0]) and genotype-discordant diets (−4.8 kg [SD:1.1]; adjusted difference: −0.6 kg [95% CI: −2.1,0.9], p = 0.50). With the current ability to genotype participants as fat- or carbohydrate-responders, evidence does not support greater WL on genotype-concordant diets. ClinicalTrials identifier: NCT04145466

    Leptin mediates the increase in blood pressure associated with obesity.

    Get PDF
    Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species

    A Flow Cytometry-Based FRET Assay to Identify and Analyse Protein-Protein Interactions in Living Cells

    Get PDF
    Försters resonance energy transfer (FRET) microscopy is widely used for the analysis of protein interactions in intact cells. However, FRET microscopy is technically challenging and does not allow assessing interactions in large cell numbers. To overcome these limitations we developed a flow cytometry-based FRET assay and analysed interactions of human and simian immunodeficiency virus (HIV and SIV) Nef and Vpu proteins with cellular factors, as well as HIV Rev multimer-formation.Amongst others, we characterize the interaction of Vpu with CD317 (also termed Bst-2 or tetherin), a host restriction factor that inhibits HIV release from infected cells and demonstrate that the direct binding of both is mediated by the Vpu membrane-spanning region. Furthermore, we adapted our assay to allow the identification of novel protein interaction partners in a high-throughput format.The presented combination of FRET and FACS offers the precious possibility to discover and define protein interactions in living cells and is expected to contribute to the identification of novel therapeutic targets for treatment of human diseases

    A randomized, controlled trial of 3.0 mg of liraglutide in weight management

    Get PDF
    BACKGROUND Obesity is a chronic disease with serious health consequences, but weight loss is difficult to maintain through lifestyle intervention alone. Liraglutide, a glucagonlike peptide-1 analogue, has been shown to have potential benefit for weight management at a once-daily dose of 3.0 mg, injected subcutaneously. METHODS We conducted a 56-week, double-blind trial involving 3731 patients who did not have type 2 diabetes and who had a body-mass index (BMI; the weight in kilograms divided by the square of the height in meters) of at least 30 or a BMI of at least 27 if they had treated or untreated dyslipidemia or hypertension. We randomly assigned patients in a 2:1 ratio to receive once-daily subcutaneous injections of liraglutide at a dose of 3.0 mg (2487 patients) or placebo (1244 patients); both groups received counseling on lifestyle modification. The coprimary end points were the change in body weight and the proportions of patients losing at least 5% and more than 10% of their initial body weight. RESULTS At baseline, the mean (±SD) age of the patients was 45.1±12.0 years, the mean weight was 106.2±21.4 kg, and the mean BMI was 38.3±6.4; a total of 78.5% of the patients were women and 61.2% had prediabetes. At week 56, patients in the liraglutide group had lost a mean of 8.4±7.3 kg of body weight, and those in the placebo group had lost a mean of 2.8±6.5 kg (a difference of -5.6 kg; 95% confidence interval, -6.0 to -5.1; P&lt;0.001, with last-observation-carried-forward imputation). A total of 63.2% of the patients in the liraglutide group as compared with 27.1% in the placebo group lost at least 5% of their body weight (P&lt;0.001), and 33.1% and 10.6%, respectively, lost more than 10% of their body weight (P&lt;0.001). The most frequently reported adverse events with liraglutide were mild or moderate nausea and diarrhea. Serious events occurred in 6.2% of the patients in the liraglutide group and in 5.0% of the patients in the placebo group. CONCLUSIONS In this study, 3.0 mg of liraglutide, as an adjunct to diet and exercise, was associated with reduced body weight and improved metabolic control. (Funded by Novo Nordisk; SCALE Obesity and Prediabetes NN8022-1839 ClinicalTrials.gov number, NCT01272219.)
    corecore