1,575 research outputs found

    Structure-activity relationships for binding of 4-substituted triazole-phenols to macrophage migration inhibitory factor (MIF)

    Get PDF
    Macrophage migration inhibitory factor (MIF) is a versatile protein that plays a role in inflammation, autoimmune diseases and cancers. Development of novel inhibitors will enable further exploration of MIF as a drug target. In this study, we investigated structure-activity relationships of MIF inhibitors using a MIF tautomerase activity assay to measure binding. Importantly, we notified that transition metals such as copper (II) and zinc (II) interfere with the MIF tautomerase activity under the assay conditions applied. EDTA was added to the assay buffer to avoid interference of residual heavy metals with tautomerase activity measurements. Using these assay conditions the structure-activity relationships for MIF binding of a series of triazole-phenols was explored. The most potent inhibitors in this series provided activities in the low micromolar range. Enzyme kinetic analysis indicates competitive binding that proved reversible. Binding to the enzyme was confirmed using a microscale thermophoresis (MST) assay. Molecular modelling was used to rationalize the observed structure-activity relationships. The most potent inhibitor 2d inhibited proliferation of A549 cells in a clonogenic assay. In addition, 2d attenuated MIF induced ERK phosphorylation in A549 cells. Altogether, this study provides insights in the structure-activity relationships for MIF binding of triazole-phenols and further validates this class of compounds as MIF binding agents in cell-based studies

    Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy.

    Get PDF
    BACKGROUND: Obesity can cause structural and functional abnormalities of the heart via complex but largely undefined mechanisms. Emerging evidence has shown that obesity results in reduced oxygen concentrations, or hypoxia, in adipose tissue. We hypothesized that the adipocyte hypoxia-signaling pathway plays an essential role in the development of obesity-associated cardiomyopathy. METHODS AND RESULTS: Using a mouse model in which the hypoxia-inducible factor (HIF) pathway is activated by deletion of the von Hippel-Lindau gene specifically in adipocytes, we found that mice with adipocyte-von Hippel-Lindau deletion developed lethal cardiac hypertrophy. HIF activation in adipocytes results in overexpression of key cardiomyopathy-associated genes in adipose tissue, increased serum levels of several proinflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1, and activation of nuclear factor-κB and nuclear factor of activated T cells in the heart. Interestingly, genetic deletion of Hif2a, but not Hif1a, was able to rescue cardiac hypertrophy and abrogate adipose inflammation. CONCLUSION: We have discovered a previously uncharacterized mechanism underlying a critical and direct role of the adipocyte HIF-2 transcription factor in the development of adipose inflammation and pathological cardiac hypertrophy

    Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis

    Get PDF
    AbstractWe deleted the hypoxia-responsive transcription factor HIF-1α in endothelial cells (EC) to determine its role during neovascularization. We found that loss of HIF-1α inhibits a number of important parameters of EC behavior during angiogenesis: these include proliferation, chemotaxis, extracellular matrix penetration, and wound healing. Most strikingly, loss of HIF-1α in EC results in a profound inhibition of blood vessel growth in solid tumors. These phenomena are all linked to a decreased level of VEGF expression and loss of autocrine response of VEGFR-2 in HIF-1α null EC. We thus show that a HIF-1α-driven, VEGF-mediated autocrine loop in EC is an essential component of solid tumor angiogenesis

    Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice

    Get PDF
    Caveolin-1 (Cav-1) is the principal structural component of caveolae organelles in smooth muscle cells, adipocytes, fibroblasts, epithelial cells, and endothelial cells (ECs). Cav-1–deficient (Cav-1 knockout [KO]) mice are viable and show increases of nitric oxide (NO) production in vasculature, cardiomyopathy, and pulmonary dysfunction. In this study, we generated EC-specific Cav-1–reconstituted (Cav-1 RC) mice and reexamined vascular, cardiac, and pulmonary phenotypes. Cav-1 KO pulmonary arteries had decreased smooth muscle contractility and increased endothelial NO synthase activation and hypotension; the latter two effects were rescued completely in Cav-1 RC mice. Cav-1 KO mice exhibited myocardial hypertrophy, pulmonary hypertension, and alveolar cell hyperproliferation caused by constitutive activation of p42/44 mitogen-activated protein kinase and Akt. Interestingly, in Cav-1 RC mice, cardiac hypertrophy and pulmonary hypertension were completely rescued, whereas alveolar hyperplasia was partially recovered because of the lack of rescue of Cav-1 in bronchiolar epithelial cells. These results provide clear physiological evidence supporting the important role of cell type–specific Cav-1 expression governing multiple phenotypes in the vasculature, heart, and lung

    Longitudinal Remote SBRT/SRS Training in Latin America: A Prospective Cohort Study

    Get PDF
    BACKGROUND: Continuing medical education in stereotactic technology are scarcely accessible in developing countries. We report the results of upscaling a longitudinal telehealth training course on stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS), after successfully developing a pilot course in Latin America. METHODS: Longitudinal training on SBRT and SRS was provided to radiation oncology practitioners in Peru and Colombia at no cost. The program included sixteen weekly 1-hour live conferencing sessions with interactive didactics and a cloud-based platform for case-based learning. Participant-reported confidence was measured in 16 SBRT/SRS practical domains, based on a 1-to-5 Likert scale. Pre- and post-curriculum exams were required for participation credit. Knowledge-baseline, pre- and post-curriculum surveys, overall and single professional-group confidence changes, and exam results were assessed. RESULTS: One hundred and seventy-three radiotherapy professionals participated. An average of 56 (SD ±18) attendees per session were registered. Fifty (29.7%) participants completed the pre- and post-curriculum surveys, of which 30% were radiation oncologists (RO), 26% radiation therapists (RTT), 20% residents, 18% medical physicists and 6% neurosurgeons. Significant improvements were found across all 16 domains with overall mean +0.55 (SD ±0.17, p\u3c0.001) Likert-scale points. Significant improvements in individual competences were most common among medical physicists, RTT and residents. Pre- and post-curriculum exams yielded a mean 16.15/30 (53.8 ± 20.3%) and 23.6/30 (78.7 ± 19.3%) correct answers (p\u3c0.001). CONCLUSION: Longitudinal telehealth training is an effective method for improving confidence and knowledge on SBRT/SRS amongst professionals. Remote continuing medical education should be widely adopted in lower-middle income countries

    Structure-activity relationships for binding of 4-substituted

    Get PDF
    Macrophage migration inhibitory factor (MIF) is a versatile protein that plays a role in inflammation, autoimmune diseases and cancers. Development of novel inhibitors will enable further exploration of MIF as a drug target. In this study, we investigated structure-activity relationships of MIF inhibitors using a MIF tautomerase activity assay to measure binding. Importantly, we notified that transition metals such as copper (II) and zinc (II) interfere with the MIF tautomerase activity under the assay conditions applied. EDTA was added to the assay buffer to avoid interference of residual heavy metals with tautomerase activity measurements. Using these assay conditions the structure-activity relationships for MIF binding of a series of triazole-phenols was explored. The most potent inhibitors in this series provided activities in the low micromolar range. Enzyme kinetic analysis indicates competitive binding that proved reversible. Binding to the enzyme was confirmed using a microscale thermophoresis (MST) assay. Mo�lecular modelling was used to rationalize the observed structure-activity relationships. The most potent inhibitor 2d inhibited proliferation of A549 cells in a clonogenic assay. In addition, 2d attenuated MIF induced ERK phosphorylation in A549 cells. Altogether, this study provides insights in the structure�activity relationships for MIF binding of triazole-phenols and further validates this class of compounds as MIF binding agents in cell-based studies
    corecore