1 research outputs found
Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride
When designing semiconductor heterostructures,
it is expected that
epitaxial alignment will facilitate low-defect interfaces and efficient
vertical transport. Here, we report lattice-matched epitaxial growth
of molybdenum disulfide (MoS<sub>2</sub>) directly on gallium nitride
(GaN), resulting in high-quality, unstrained, single-layer MoS<sub>2</sub> with strict registry to the GaN lattice. These results present
a promising path toward the implementation of high-performance electronic
devices based on 2D/3D vertical heterostructures, where each of the
3D and 2D semiconductors is both a template for subsequent epitaxial
growth and an active component of the device. The MoS<sub>2</sub> monolayer
triangles average 1 μm along each side, with monolayer blankets
(merged triangles) exhibiting properties similar to that of single-crystal
MoS<sub>2</sub> sheets. Photoluminescence, Raman, atomic force microscopy,
and X-ray photoelectron spectroscopy analyses identified monolayer
MoS<sub>2</sub> with a prominent 20-fold enhancement of photoluminescence
in the center regions of larger triangles. The MoS<sub>2</sub>/GaN
structures are shown to electrically conduct in the out-of-plane direction,
confirming the potential of directly synthesized 2D/3D semiconductor
heterostructures for vertical current flow. Finally, we estimate a
MoS<sub>2</sub>/GaN contact resistivity to be less than 4 Ω·cm<sup>2</sup> and current spreading in the MoS<sub>2</sub> monolayer of
approximately 1 μm in diameter