3,279 research outputs found

    Local load sharing fiber bundles with a lower cutoff of strength disorder

    Full text link
    We study the failure properties of fiber bundles with a finite lower cutoff of the strength disorder varying the range of interaction between the limiting cases of completely global and completely local load sharing. Computer simulations revealed that at any range of load redistribution there exists a critical cutoff strength where the macroscopic response of the bundle becomes perfectly brittle, i.e. linearly elastic behavior is obtained up to global failure, which occurs catastrophically after the breaking of a small number of fibers. As an extension of recent mean field studies [Phys. Rev. Lett. 95, 125501 (2005)], we demonstrate that approaching the critical cutoff, the size distribution of bursts of breaking fibers shows a crossover to a universal power law form with an exponent 3/2 independent of the range of interaction.Comment: 4 pages, 4 figure

    Matched Filtering of Numerical Relativity Templates of Spinning Binary Black Holes

    Full text link
    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test-beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole-binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole-spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary spin and inclination for the axial case considered here

    Towards beating the curse of dimensionality for gravitational waves using Reduced Basis

    Get PDF
    Using the Reduced Basis approach, we efficiently compress and accurately represent the space of waveforms for non-precessing binary black hole inspirals, which constitutes a four dimensional parameter space (two masses, two spin magnitudes). Compared to the non-spinning case, we find that only a {\it marginal} increase in the (already relatively small) number of reduced basis elements is required to represent any non-precessing waveform to nearly numerical round-off precision. Most parameters selected by the algorithm are near the boundary of the parameter space, leaving the bulk of its volume sparse. Our results suggest that the full eight dimensional space (two masses, two spin magnitudes, four spin orientation angles on the unit sphere) may be highly compressible and represented with very high accuracy by a remarkably small number of waveforms, thus providing some hope that the number of numerical relativity simulations of binary black hole coalescences needed to represent the entire space of configurations is not intractable. Finally, we find that the {\it distribution} of selected parameters is robust to different choices of seed values starting the algorithm, a property which should be useful for indicating parameters for numerical relativity simulations of binary black holes. In particular, we find that the mass ratios m1/m2m_1/m_2 of non-spinning binaries selected by the algorithm are mostly in the interval [1,3][1,3] and that the median of the distribution follows a power-law behavior (m1/m2)5.25\sim (m_1/m_2)^{-5.25}

    The effects of clinical hypnosis versus Neurolinguistic Programming (NLP) before External Cephalic Version (ECV) : a prospective off-centre randomised, double-blind, controlled trial

    Get PDF
    Objective. To examine the effects of clinical hypnosis versus NLP intervention on the success rate of ECV procedures in comparison to a control group. Methods. A prospective off-centre randomised trial of a clinical hypnosis intervention against NLP of women with a singleton breech fetus at or after 370/7 (259 days) weeks of gestation and normal amniotic fluid index. All 80 participants heard a 20-minute recorded intervention via head phones. Main outcome assessed was success rate of ECV. The intervention groups were compared with a control group with standard medical care alone (n=122). Results. A total of 42 women, who received a hypnosis intervention prior to ECV, had a 40.5% (n=17), successful ECV, whereas 38 women, who received NLP, had a 44.7% (n=17) successful ECV (P > 0.05). The control group had similar patient characteristics compared to the intervention groups (P > 0.05). In the control group (n = 122) 27.3% (n = 33) had a statistically significant lower successful ECV procedure than NLP (P = 0.05) and hypnosis and NLP (P = 0.03). Conclusions. These findings suggest that prior clinical hypnosis and NLP have similar success rates of ECV procedures and are both superior to standard medical care alone

    Robustness of Binary Black Hole Mergers in the Presence of Spurious Radiation

    Full text link
    We present an investigation into how sensitive the last orbits and merger of binary black hole systems are to the presence of spurious radiation in the initial data. Our numerical experiments consist of a binary black hole system starting the last couple of orbits before merger with additional spurious radiation centered at the origin and fixed initial angular momentum. As the energy in the added spurious radiation increases, the binary is invariably hardened for the cases we tested, i.e. the merger of the two black holes is hastened. The change in merger time becomes significant when the additional energy provided by the spurious radiation increases the Arnowitt-Deser-Misner (ADM) mass of the spacetime by about 1%. While the final masses of the black holes increase due to partial absorption of the radiation, the final spins remain constant to within our numerical accuracy. We conjecture that the spurious radiation is primarily increasing the eccentricity of the orbit and secondarily increasing the mass of the black holes while propagating out to infinity.Comment: 12 pages, 12 figure

    Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts

    Get PDF
    Members of the YidC/Oxa1/Alb3 protein family facilitate the insertion, folding and assembly of proteins of the inner membranes of bacteria and mitochondria and the thylakoid membrane of plastids. All homologs share a conserved hydrophobic core region comprising five transmembrane domains. On the basis of phylogenetic analyses, six subgroups of the family can be distinguished which presumably arose from three independent gene duplications followed by functional specialization. During evolution of bacteria, mitochondria and chloroplasts, subgroup-specific regions were added to the core domain to facilitate the association with ribosomes or other components contributing to the substrate spectrum of YidC/Oxa1/Alb3 proteins

    Horizon Pretracking

    Full text link
    We introduce horizon pretracking as a method for analysing numerically generated spacetimes of merging black holes. Pretracking consists of following certain modified constant expansion surfaces during a simulation before a common apparent horizon has formed. The tracked surfaces exist at all times, and are defined so as to include the common apparent horizon if it exists. The method provides a way for finding this common apparent horizon in an efficient and reliable manner at the earliest possible time. We can distinguish inner and outer horizons by examining the distortion of the surface. Properties of the pretracking surface such as its expansion, location, shape, area, and angular momentum can also be used to predict when a common apparent horizon will appear, and its characteristics. The latter could also be used to feed back into the simulation by adapting e.g. boundary or gauge conditions even before the common apparent horizon has formed.Comment: 14 pages, 8 figures, minor change

    The Evolution of Loyalty Intentions

    Get PDF
    The drivers of customer loyalty intentions are dynamic. What remains unclear is how these intentions evolve through the introduction and growth phases of a life cycle. Using a longitudinal study of cellular phone customers, the authors demonstrate that loyalty intentions are a function of perceived value early in the life cycle. Over time, more affective attitudes toward the brand and the relationship with the company come to mediate the effects of value on intentions. The results suggest that from the introduction to the growth stage of a life cycle, managers must adapt from improving value per se to measuring and managing relationships and brands directly
    corecore