238 research outputs found

    The role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene

    Full text link
    We address the role of excitonic coulping on the nature of photoexcitations in the conjugated polymer regioregular poly(3-hexylthiophene). By means of temperature-dependent absorption and photoluminescence spectroscopy, we show that optical emission is overwhelmingly dominated by weakly coupled H-aggregates. The relative absorbance of the 0-0 and 0-1 vibronic peaks provides a powerfully simple means to extract the magnitude of the intermolecular coupling energy, approximately 5 and 30 meV for films spun from isodurene and chloroform solutions respectively.Comment: 10 pages, 4 figures, published in Phys. Rev. Let

    Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy

    Full text link
    We analyze the linear absorption spectrum of regioregular poly(3-hexylthiophene) films spun from a variety of solvents to probe directly the film microstructure and how it depends on processing conditions. We estimate the exciton bandwidth and the percentage of the film composed of aggregates quantitatively using a weakly interacting H-aggregate model. This provides a description of the degree and quality of crystallites within the film and is in turn correlated with thin-film field-effect transistor characteristics.Comment: Applied Physics Letters (in press); 9 pages, three figure

    In vitro assembly of a prohead-like structure of the Rhodobacter capsulatus gene transfer agent

    Get PDF
    AbstractThe gene transfer agent (GTA) is a phage-like particle capable of exchanging double-stranded DNA fragments between cells of the photosynthetic bacterium Rhodobacter capsulatus. Here we show that the major capsid protein of GTA, expressed in E. coli, can be assembled into prohead-like structures in the presence of calcium ions in vitro. Transmission electron microscopy (TEM) of uranyl acetate staining material and thin sections of glutaraldehyde-fixed material demonstrates that these associates have spherical structures with diameters in the range of 27–35 nm. The analysis of scanning TEM images revealed particles of mass ∼4.3 MDa, representing 101±11 copies of the monomeric subunit. The establishment of this simple and rapid method to form prohead-like particles permits the GTA system to be used for genome manipulation within the photosynthetic bacterium, for specific targeted drug delivery, and for the construction of biologically based distributed autonomous sensors for environmental monitoring

    Understanding Dwarf Galaxies in order to Understand Dark Matter

    Full text link
    Much progress has been made in recent years by the galaxy simulation community in making realistic galaxies, mostly by more accurately capturing the effects of baryons on the structural evolution of dark matter halos at high resolutions. This progress has altered theoretical expectations for galaxy evolution within a Cold Dark Matter (CDM) model, reconciling many earlier discrepancies between theory and observations. Despite this reconciliation, CDM may not be an accurate model for our Universe. Much more work must be done to understand the predictions for galaxy formation within alternative dark matter models.Comment: Refereed contribution to the Proceedings of the Simons Symposium on Illuminating Dark Matter, to be published by Springe

    Precise Prediction for M_W in the MSSM

    Full text link
    We present the currently most accurate evaluation of the W boson mass, M_W, in the Minimal Supersymmetric Standard Model (MSSM). The full complex phase dependence at the one-loop level, all available MSSM two-loop corrections as well as the full Standard Model result have been included. We analyse the impact of the different sectors of the MSSM at the one-loop level with a particular emphasis on the effect of the complex phases. We discuss the prediction for M_W based on all known higher-order contributions in representative MSSM scenarios. Furthermore we obtain an estimate of the remaining theoretical uncertainty from unknown higher-order corrections.Comment: 38 pages, 25 figures. Minor corrections, additional reference

    A thermostable protein matrix for spectroscopic analysis of organic semiconductors

    Get PDF
    Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials
    corecore