74 research outputs found

    Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer.

    Get PDF
    This is the published version. Copyright 1998 by American Society for Clinical Investigation.A soluble monomeric form of Alzheimer's amyloid-beta (1-40) peptide (sAbeta1-40) is present in the circulation and could contribute to neurotoxicity if it crosses the brain capillary endothelium, which comprises the blood-brain barrier (BBB) in vivo. This study characterizes endothelial binding and transcytosis of a synthetic peptide homologous to human sAbeta1-40 using an in vitro model of human BBB. 125I-sAbeta1-40 binding to the brain microvascular endothelial cell monolayer was time dependent, polarized to the apical side, and saturable with high- and low-affinity dissociation constants of 7.8+/-1.2 and 52.8+/-6.2 nM, respectively. Binding of 125I-sAbeta1-40 was inhibited by anti-RAGE (receptor for advanced glycation end products) antibody (63%) and by acetylated low density lipoproteins (33%). Consistent with these data, transfected cultured cells overexpressing RAGE or macrophage scavenger receptor (SR), type A, displayed binding and internalization of 125I-sAbeta1-40. The internalized peptide remains intact > 94%. Transcytosis of 125I-sAbeta1-40 was time and temperature dependent, asymmetrical from the apical to basolateral side, saturable with a Michaelis constant of 45+/-9 nM, and partially sensitive to RAGE blockade (36%) but not to SR blockade. We conclude that RAGE and SR mediate binding of sAbeta1-40 at the apical side of human BBB, and that RAGE is also involved in sAbeta1-40 transcytosis

    Short-term efficacy and safety of betamethasone valerate 2.25 mg medicated plaster in patients with chronic lateral epicondylitis: Results of a randomised, double blind, placebo-controlled study

    Get PDF
    Background. This placebo-controlled, double-blind study evaluated the short-term effects of betamethasone valerate (BMV) 2.25mg medicated plaster in patients with chronic lateral elbow tendinopathy (LET). Methods. Adult outpatients with LET and on-movement pain intensity ≥50 mm at a 0-100mm visual analogue scale (VAS) were randomised to receive BMV (N=101) or placebo (N=98), 12 hours/day for 4 weeks. Pain decrease from baseline to Day 28 was the primary endpoint. Other endpoints were: patient-rated tennis elbow evaluation (PRTEE), use of rescue paracetamol, tolerability at the application site. Results. Decrease in mean pain VAS from baseline to Day 28 was significantly higher with BMV vs. placebo: the difference between groups (intent-to-treat) was-8.57 mm (95% CI:-16.19 to-0.95 mm; p=0.028). Higher pain decreases in the BMV group over placebo were reported weekly during each control visit and daily in patients’ measurements on diaries. Treatment with BMV also led to higher decreases vs. placebo in PRTEE total, pain and functional disability score. Use of paracetamol was minimal. BMV plaster was well tolerated for general and local adverse events. Conclusions. BMV 2.25mg plaster was superior to placebo and well tolerated in patients with painful chronic LET

    Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines

    Get PDF
    Present immunoprevention and immunotherapeutic approaches against cancer suffer from the limitation of being not “sterilizing” procedures, as very poor protection against the tumor is obtained. Thus newly conceived anti-tumor vaccination strategies are urgently needed. In this review we will focus on ways to provide optimal MHC class II-restricted tumor antigen presentation to CD4+ T helper cells as a crucial parameter to get optimal and protective adaptive immune response against tumor. Through the description of successful preventive or therapeutic experimental approaches to vaccinate the host against the tumor we will show that optimal activation of MHC class II-restricted tumor specific CD4+ T helper cells can be achieved in various ways. Interestingly, the success in tumor eradication and/or growth arrest generated by classical therapies such as radiotherapy and chemotherapy in some instances can be re-interpreted on the basis of an adaptive immune response induced by providing suitable access of tumor-associated antigens to MHC class II molecules. Therefore, focussing on strategies to generate better and suitable MHC class II–restricted activation of tumor specific CD4+ T helper cells may have an important impact on fighting and defeating cancer

    Non Clinical Model to Assess the Mechanism of Action of a Combined Hyaluronic Acid, Chondroitin Sulfate and Calcium Chloride: HA+CS+CaCl2 Solution on a 3D Human Reconstructed Bladder Epithelium

    No full text
    Laura Brambilla,1 Valeria Frangione,2 Marisa Meloni1 1VitroScreen, in vitro Research Laboratory, Milan, Italy; 2IBSA Institut Biochimique SA, Pambio-Noranco, SwitzerlandCorrespondence: Marisa Meloni, VitroScreen, Via Mosè Bianchi, 103, Milan, 20149, Italy, Tel +39 02 89077608, Email [email protected]: Medical Device Regulation (EU) 2017/745 requires the principal mode of action (MoA) to be demonstrated by experimental data. The MoA of Ialuril® Prefill (combined as HA+CS+CaCl2: sodium hyaluronate 1.6%, sodium chondroitin sulphate 2% w/v and calcium chloride 0.87%) Class III medical device, indicated for intravesical instillation to reduce urinary tract infections, has been evaluated on a 3D reconstructed human bladder epithelium (HBE).Methods: Three experimental designs; i) E. coli strain selection (DSM 103538, DSM 1103) to investigate the HA+CS+CaCl2 properties in modifying bacterial growth in liquid broth (CFU 4h and 24h) at 80%, 50% and 25% concentrations; ii) evaluation of film forming properties on HBE after 15 min exposure by quantifying caffeine permeation across the epithelium; iii) capacity to counteract E. coli adhesion and biofilm formation on colonized HBE by viable counts and ultrastructural analysis by scanning electron microscopy (SEM) using ciprofloxacin as the reference antimicrobial molecule.Results: No significant differences were observed in bacterial viability for both the E. coli strains. HA+CS+CaCl2 reduced caffeine permeation of 51.7% and 38.1% at 1h and 2h, respectively and determined a significant decrease in caffeine permeation rate at both timepoints supporting HA+CS+CaCl2 capacity to firmly adhere to the bladder epithelium creating a physical barrier on the surface. The viable counts in HBE treated tissues then infected with E. coli resulted not different from the negative control suggesting that the device did not inhibit E. coli growth. SEM images showed homogenous product distribution over the HBE surface and confirmed the capacity of HA+CS+CaCl2 to adhere to the bladder epithelium, counteracting biofilm formation.Conclusion: The results support the capacity of HA+CS+CaCl2 to counteract bacterial invasion by using a physico-mechanical mode of action: this medical device represents a valid alternative to antibiotics in the treatment of recurrent UTIs.Keywords: recurrent cystitis, urinary tract infections, E. coli UPEC, E. coli biofilm, hyaluronic acid, chondroitin sulphate, film forming properties, anti-bacterial adhesion, reconstructed 3D human bladder epitheliu

    New strategies of mammary cancer vaccination

    No full text
    A new strategy of vaccination against mammary tumors, extendible to tumors of distinct histological origin, based on the administration of tumor cells genetically modified to express major histocompatibility complex (MHC) class II gene products, will be described. Expression of MHC class II molecules in solid tumors, generally lacking these molecules, is achieved by transfecting tumor cells with the MHC class II transactivator (CIITA), the major regulator of the entire family of MHC class II genes. CIITA is encoded by the AIR-1 locus, discovered in our laboratory. The rationale underlying this approach consists in making the tumor cells a sort of surrogate antigen presenting cells for MHC-II-restricted CD4 + T helper (TH) cells. Indeed, it is known that an efficient adaptive immune response against cancer cells can only be achieved if tumor-specific TH cells, the key lymphocyte subpopulation required to trigger both humoral and cellular effector mechanisms, are optimally stimulated. Results from our group show that: (a) CIITA-modified tumor cells can be rejected in vivo by syngeneic immunocompetent mice; (b) this rejection is mediated primarily by CD4 + TH lymphocytes that activate cytolytic CD8 + T cell effectors; (c) tumor-rejecting mice are resistant to challenge with parental unmodified tumor cells and display long term immune memory; (d) anti-tumor vaccination can be reproduced by using inactivated, nonreplicating CIITA-transfected tumor cells; (e) immune effectors and particularly primed CD4 + TH cells can be used successfully in approaches of immunotherapy of established tumors. These results open the way to envisage a possible use of CIITA-modified mammary tumor cells as a vaccine for increasing both the inducing and the effector phase of the anti-tumor immune response in human settings
    • …
    corecore