14,884 research outputs found
Towards socially adaptive robots : A novel method for real time recognition of human-robot interaction styles
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ICHR.2008.4756004Automatically detecting different styles of play in human-robot interaction is a key challenge towards adaptive robots, i.e. robots that are able to regulate the interactions and adapt to different interaction styles of the robot users. In this paper we present a novel algorithm for pattern recognition in human-robot interaction, the Cascaded Information Bottleneck Method. We apply it to real-time autonomous recognition of human-robot interaction styles. This method uses an information theoretic approach and enables to progressively extract relevant information from time series. It relies on a cascade of bottlenecks, the bottlenecks being trained one after the other according to the existing Agglomerative Information Bottleneck Algorithm. We show that a structure for the bottleneck states along the cascade emerges and we introduce a measure to extrapolate unseen data. We apply this method to real-time recognition of Human-Robot Interaction Styles by a robot in a detailed case study. The algorithm has been implemented for real interactions between humans and a real robot. We demonstrate that the algorithm, which is designed to operate real time, is capable of classifying interaction styles, with a good accuracy and a very acceptable delay. Our future work will evaluate this method in scenarios on robot-assisted therapy for children with autism.Peer reviewe
Electronic dynamics and frequency-dependent effects in circularly polarized strong-field physics
We analyze, quantum mechanically, the dynamics of ionization with a strong,
circularly polarized, laser field. We show that the main source for
non-adiabatic effects is connected to an effective barrier lowering due to the
laser frequency. Such non-adiabatic effects manifest themselves through
ionization rates and yields that depart up to more than one order of magnitude
from a static-field configuration. Beyond circular polarization, these results
show the limits of standard instantaneous - static-field like - interpretation
of laser-matter interaction and the great need for including time dependent
electronic dynamics
First-Passage Time and Large-Deviation Analysis for Erasure Channels with Memory
This article considers the performance of digital communication systems
transmitting messages over finite-state erasure channels with memory.
Information bits are protected from channel erasures using error-correcting
codes; successful receptions of codewords are acknowledged at the source
through instantaneous feedback. The primary focus of this research is on
delay-sensitive applications, codes with finite block lengths and, necessarily,
non-vanishing probabilities of decoding failure. The contribution of this
article is twofold. A methodology to compute the distribution of the time
required to empty a buffer is introduced. Based on this distribution, the mean
hitting time to an empty queue and delay-violation probabilities for specific
thresholds can be computed explicitly. The proposed techniques apply to
situations where the transmit buffer contains a predetermined number of
information bits at the onset of the data transfer. Furthermore, as additional
performance criteria, large deviation principles are obtained for the empirical
mean service time and the average packet-transmission time associated with the
communication process. This rigorous framework yields a pragmatic methodology
to select code rate and block length for the communication unit as functions of
the service requirements. Examples motivated by practical systems are provided
to further illustrate the applicability of these techniques.Comment: To appear in IEEE Transactions on Information Theor
Black Hole-Neutron Star Mergers: Disk Mass Predictions
Determining the final result of black hole-neutron star mergers, and in
particular the amount of matter remaining outside the black hole at late times
and its properties, has been one of the main motivations behind the numerical
simulation of these systems. Black hole-neutron star binaries are amongst the
most likely progenitors of short gamma-ray bursts --- as long as massive
(probably a few percents of a solar mass), hot accretion disks are formed
around the black hole. Whether this actually happens strongly depends on the
physical characteristics of the system, and in particular on the mass ratio,
the spin of the black hole, and the radius of the neutron star. We present here
a simple two-parameter model, fitted to existing numerical results, for the
determination of the mass remaining outside the black hole a few milliseconds
after a black hole-neutron star merger (i.e. the combined mass of the accretion
disk, the tidal tail, and the potential ejecta). This model predicts the
remnant mass within a few percents of the mass of the neutron star, at least
for remnant masses up to 20% of the neutron star mass. Results across the range
of parameters deemed to be the most likely astrophysically are presented here.
We find that, for 10 solar mass black holes, massive disks are only possible
for large neutron stars (R>12km), or quasi-extremal black hole spins (a/M>0.9).
We also use our model to discuss how the equation of state of the neutron star
affects the final remnant, and the strong influence that this can have on the
rate of short gamma-ray bursts produced by black hole-neutron star mergers.Comment: 11 pages, 7 figure
The Structure and Dynamical Evolution of Dark Matter Halos
(Shortened) We use N-body simulations to investigate the structure and
dynamical evolution of dark matter halos in galaxy clusters. Our sample
consists of nine massive halos from an EdS universe with scale free power
spectrum and n = -1. Halos are resolved by ~20000 particles each, with a
dynamical resolution of 20-25 kpc. Large scale tidal fields are included up to
L=150 Mpc using background particles. The halo formation process can be
characterized by the alternation of two dynamical configurations: a merging
phase and a relaxation phase, defined by their signature on the evolution of
the total mass and rms velocity. Halos spend on average one 1/3 of their
evolution in the merging phase and 2/3 in the relaxation phase. Using this
definition, we study the density profiles and their change during the halo
history. The average density profiles are fitted by the NFW analytical model
with an rms residual of 17% between the virial radius Rv and 0.01 Rv. The
Hernquist (1990) profiles fits the same halos with an rms residual of 26%. The
trend with mass of the scale radius of these fits is marginally consistent with
that found by Cole & Lacey (1996): in comparison our halos are more centrally
concentrated, and the relation between scale radius and halo mass is slightly
steeper. We find a moderately large scatter in this relation, due both to
dynamical evolution within halos and to fluctuations in the halo population. We
analyze the dynamical equilibrium of our halos using the Jeans' equation, and
find that on average they are approximately in equilibrium within their virial
radius. Finally, we find that the projected mass profiles of our simulated
halos are in very good agreement with the profiles of three rich galaxy
clusters derived from strong and weak gravitational lensing observations.Comment: 20 pages, Latex, with all figures included. Modified to match the
published versio
Photocurrents in nanotube junctions
Photocurrents in nanotube p-n junctions are calculated using a
non-equilibrium Green function quantum transport formalism. The short-circuit
photocurrent displays band-to-band transitions and photon-assisted tunneling,
and has multiple sharp peaks in the infrared, visible, and ultraviolet ranges.
The operation of such devices in the nanoscale regime leads to unusual size
effects, where the photocurrent scales linearly and oscillates with device
length. The oscillations can be related to the density of states in the valence
band, a factor that also determines the relative magnitude of the photoresponse
for different bands.Comment: 5 pages, 4 figures, submitte
- …
