12,314 research outputs found

    Role of the Nuclear and Electromagnetic Interactions in the Coherent Dissociation of the Relativistic 7^7Li Nucleus into the 3^3H + 4^4He Channel

    Full text link
    The differential cross section in the transverse momentum QQ and a total cross section of (31±4)(31\pm4) mb for the coherent dissociation of a 3-A-GeV/cc 7^7Li nucleus through the 3^3H+4+^4He channel have been measured on emulsion nuclei. The observed QQ dependence of the cross section is explained by the predominant supposition of the nuclear diffraction patterns on light (C, N, O) and heavy (Br, Ag) emulsion nuclei. The contributions to the cross section from nuclear diffraction (Q≤400Q\le400 MeV/cc) and Coulomb (Q≤50(Q\le50 MeV/cc) dissociations are calculated to be 40.7 and 4 mb, respectively.Comment: ISSN 0021-3640, Pleiades Publishing, Ltd., 200

    Efficaciousness of low affinity compared to high affinity TSPO ligands in the inhibition of hypoxic mitochondrial cellular damage induced by cobalt chloride in human lung H1299 cells

    Get PDF
    The 18 kDa translocator protein (TSPO) plays an important role in apoptotic cell death, including apoptosis induced by the hypoxia mimicking agent cobalt chloride (CoCl2). In this study, the protective effects of a high (CB86; Ki = 1.6 nM) and a low (CB204; Ki = 117.7 nM) affinity TSPO ligands were investigated in H1299 lung cancer cell line exposed to CoCl2. The lung cell line H1299 was chosen in the present study since they express TSPO and able to undergo programmed cell death. The examined cell death markers included: ATP synthase reversal, reactive oxygen species (ROS) generation, mitochondrial membrane potential (D m) depolarization, cellular toxicity, and cellular viability. Pretreatment of the cells with the low affinity ligand CB204 at a concentration of 100 ÎĽM suppressed significantly (p < 0.05 for all) CoCl2-induced cellular cytotoxicity (100%), ATP synthase reversal (67%), ROS generation (82%), D m depolarization (100%), reduction in cellular density (97%), and also increased cell viability (85%). Furthermore, the low affinity TSPO ligand CB204, was harmless when given by itself at 100 ÎĽM. In contrast, the high affinity ligand (CB86) was significantly effective only in the prevention of CoCl2-induced ROS generation (39%, p < 0.001), and showed significant cytotoxic effects when given alone at 100 ÎĽM, as reflected in alterations in ADP/ATP ratio, oxidative stress, mitochondrial membrane potential depolarization and cell death. It appears that similar to previous studies on brain-derived cells, the relatively low affinity for the TSPO target enhances the potency of TSPO ligands in the protection from hypoxic cell death. Moreover, the high affinity TSPO ligand CB86, but not the low affinity ligand CB204, was lethal to the lung cells at high concentration (100 ÎĽM). The low affinity TSPO ligand CB204 may be a candidate for the treatment of pulmonary diseases related to hypoxia, such as pulmonary ischemia and chronic obstructive pulmonary disease COPD

    Resonance effects due to the excitation of surface Josephson plasma waves in layered superconductors

    Full text link
    We analytically examine the excitation of surface Josephson plasma waves (SJPWs) in periodically-modulated layered superconductors. We show that the absorption of the incident electromagnetic wave can be substantially increased, for certain incident angles, due to the resonance excitation of SJPWs. The absorption increase is accompanied by the decrease of the specular reflection. Moreover, we find the physical conditions guaranteeing the total absorption (and total suppression of the specular reflection). These conditions can be realized for Bi2212 superconductor films.Comment: 17 pages, 3 figure
    • …
    corecore