6 research outputs found

    Current transformers with nanocrystalline alloy toroidal core: analytical, computational and experimental studies

    No full text
    In this paper are presented theoretical analysis and experimental results concerning the performance of toroidal cores used in current transformers. For most problems concerning transformers design, analytical methods are useful, but numerical methods provide a better understanding of the transformers electromagnetic behaviour. Numerical field solutions may be used to determine the electrical equivalent circuit parameters of toroidal core current transformers. Since the exciting current of current transformers alters the ratio and phase angle of primary and secondary currents, it is made as small as possible though the use of high permeability and low loss magnetic material in the construction of the core. According to experimental results presented in this work, in comparison with others soft magnetic materials, nanocrystalline alloys appear as the best material to be used in toroidal core for current transformers

    Performance of single wire earth return transformers with amorphous alloy core in a rural electric energy distribution system

    No full text
    In this paper are presented some considerations about the performance of single wire earth return amorphous alloy core transformers in comparison with conventional silicon steel sheets cores transformers used in rural electric energy distribution network. It has been recognized that amorphous metal core transformers improve electrical power distribution efficiency by reducing transformer core losses. This reduction is due to some electromagnetic properties of the amorphous alloys such as: high magnetic permeability, high resistivity, and low coercivity. Experimental results obtained with some single-phase, 60 Hz, 5 kVA amorphous core transformers installed in a rural area electric distribution system in Northern Brazil have been confirming their superior performance in comparison to identical nominal rated transformers built with conventional silicon steel cores, particularly with regard to the excitation power and to the no-load losses

    Effect of cattle manure on sunflower production and water use in two types of soil

    No full text
    The aim of the present study was to evaluate water consumption, use efficiency and yield components of sunflower variety Embrapa 122 V/2000 cultivated in two types of soil (Fluvissol and Haplic Luvisol) subjected to increasing doses of cattle manure. The experiment was carried out in a greenhouse at Universidade Estadual da Paraíba. The experimental design was completely randomized in a factorial scheme. The irrigation was performed every other day, replacing the water absorbed by the plants. The water consumption and the use efficiency were evaluated, being the use efficiency determined by the ratio of the total dry mass of sunflower and the amount of water used to produce it in each treatment. Plants were harvested at 95 days after sowing when the following parameters were evaluated: number of seeds per plant, weight of seeds per plant, weight of 1000 seeds and the outer diameter of the capitulum (head). The results showed that the sunflower was positively affected by cattle manure application, increasing the production components and the water use efficiency, regardless of the type of soil. Excepting for the 1000 seeds weight and the water use efficiency, the type of soil affected significantly the water use, the number and weight of seeds per plant. The plants cultivated in Haplic Luvisol had a better performance
    corecore