488 research outputs found

    Tiny Turtles Purchased at Pet Stores are a Potential High Risk for Salmonella Human Infection in the Valencian Region, Eastern Spain

    Full text link
    [EN] Turtles may be considered unsafe pets, particularly in households with children. This study aimed to assess Salmonella carriage by turtles in pet stores and in private ownership to inform the public of the potential health risk, enabling informed choices around pet selection. During the period between September and October 2013, 24 pet stores and 96 private owners were sampled in the Valencian Region (Eastern Spain). Salmonella identification procedure was based on ISO 6579: 2002 recommendations (Annex D). Salmonella strains were serotyped in accordance with Kauffman-White-Le-Minor technique. The rate of isolation of Salmonella was very high from pet store samples (75.0% ± 8.8%) and moderate for private owners (29.0% ± 4.6%). Serotyping revealed 18 different serotypes among two Salmonella enterica subspecies: S. enterica subsp. enterica and S. enterica subsp. diarizonae. Most frequently isolated serotypes were Salmonella Typhimurium (39.5%, 17/43) and Salmonella Pomona (9.3%, 4/43). Serotypes identified have previously been reported in turtles, and child Salmonella infections associate with pet turtle exposure. The present study clearly demonstrates that turtles in pet stores, as well as in private owners, could be a direct or indirect source of a high risk of human Salmonella infections. In addition, pet stores should advise their customers of the potential risks associated with reptile ownership.This work was supported by the Conselleria de Infraestructuras, Territorio y Medio Ambiente with their assistance and financial support (Life09-Trachemys, Resolution 28/02/12 CITMA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the article. The authors thank the technical support of Cristobal Torres, Xema Gil, and all the members of the research group "Improvement of the Food Safety related with the Production System and Final Products" (Veterinary Faculty, University CEU-Cardenal Herrera).Marin Orenga, C.; Vega García, S.; Marco Jiménez, F. (2016). Tiny Turtles Purchased at Pet Stores are a Potential High Risk for Salmonella Human Infection in the Valencian Region, Eastern Spain. Vector-Borne and Zoonotic Diseases. 16(7):455-460. doi:10.1089/vbz.2016.1950S45546016

    Effect of in vitro and in vivo conditions on development of parthenogenetic rabbit embryos after vitrification

    Full text link
    [EN] Parthenote embryos offer multiple opportunities in biotechnological research, so it is important to analyse the possibilities for their cryopreservation in order to establish a biobank. The aim of this experiment was to determine the effect of culture conditions and vitrification on rabbit parthenogenetic embryos. Parthenotes were cultured under in vivo and in vitro conditions until day 3 (late morula/early blastocyst), when they were vitrified. Immediately after warming, they were newly cultured under in vivo and in vitro conditions till day 6 (blastocyst stage). Both culture conditions showed similar late morula/early blastocyst (0.39±0.056 vs. 0.46±0.043, for in vivo and in vitro, respectively) and blastocyst rates (0.12±0.068 vs. 0.13±0.070, for in vivo and in vitro, respectively). However, no parthenote was recovered when a combination of culture conditions was performed. To our best knowledge, this is the first demonstration of the ability of rabbit parthenogenetic embryos to develop after vitrification, with similar embryo development after in vivo or in vitro culture. Nevertheless, our results highlight the importance of culture conditions on the morphology of parthenote embryos. Therefore, we have described that special attention should be paid on culture conditions to generate parthenote embryos, with a view to their subsequent use, for example in embryonic stem cell production.Statement of funding: This work was supported by funds from the Generalitat Valenciana Research Programme (Prometeoll 2014/036).Naturil Alfonso, C.; Jiménez Trigos, ME.; Vicente Antón, JS.; Marco Jiménez, F. (2015). Effect of in vitro and in vivo conditions on development of parthenogenetic rabbit embryos after vitrification. Cryobiology. 71(1):91-96. doi:10.1016/j.cryobiol.2015.05.003S919671

    Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits

    Full text link
    [EN] This study was conducted to demonstrate how embryo manipulation techniques incur phenotypic changes throughout life. This study reports the first evidence demonstrating that the vitrification device used is not a trivial decision, providing valuable information about how the cooling-warming rates during vitrification can be partly responsible of the postnatal phenotypic variations. In this study, we evaluated the effect of embryo vitrification using two different devices on adulthood phenotype in rabbits. In vitro development, prenatal embryo survival, body weight, growth performance, haematological and biochemical peripheral blood analysis, reproductive performance, and lactation performance traits were compared between the experimental groups. They derived from naturally-conceived embryos (NC), fresh-transferred embryos (FT), vitrified-transferred embryos using mini-straw (VTs), or vitrified-transferred embryos using Cryotop (VTc). Straw-vitrified embryos exhibited lower in vitro developmental rates and in vivo survival rates following embryo transfer compared to its Cryotop-vitrified counterparts. Moreover, the VTs group exhibited higher foetal losses than VTc, FT, and NC groups. Independently of the vitrification device, vitrified-transferred (VT) offspring showed a skewed sex ratio in favour of males, and an increased birth bodyweight. In contrast, postnatal daily growth was diminished in all ART (i.e., FT and VT) animals. In adulthood, significant differences in body weight between all groups was founded-all ART progenies weighed less than NC animals and, within ART, VT animals weighed less than FT. For VT groups, weight at adulthood was higher for the VTs group compared with the VTc group. Peripheral blood parameters ranged between common values. Moreover, no differences were found in the fertility rates between experimental groups. Furthermore, similar pregnancy rates, litter sizes, and the number of liveborns were observed, regardless of the experimental group. However, decreased milk yield occurred for VTc and FT animals compared to VTs and NC animals. A similar trend was observed for the milk composition of dry matter and fat. Concordantly, reduced body weight was found for suckling kits in the VTc and FT groups compared to VTs and NC animals. Our findings reveal that developmental changes after the embryo vitrification procedure could be associated with an exhibition of the embryonic developmental plasticity. Moreover, to our best knowledge, this study reports the first evidence demonstrating that the vitrification device used is not a trivial decision, providing valuable information about how the cooling-warming rates during vitrification can be partly responsible of the postnatal phenotypic variations.Funding from the Ministry of Economy, Industry and Competitiveness (research project: AGL2014-53405-C2-1-P and AGL2017-85162-C2-1-R) is acknowledged. X.G.-D. was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429). English text version was revised by N. Macowan English Language Service.Garcia-Dominguez, X.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals. 10(5):1-17. https://doi.org/10.3390/ani10050804S117105Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028García-Martínez, S., Sánchez Hurtado, M. A., Gutiérrez, H., Sánchez Margallo, F. M., Romar, R., Latorre, R., … López Albors, O. (2018). Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. MHR: Basic science of reproductive medicine, 24(5), 260-270. doi:10.1093/molehr/gay008Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Servick, K. (2014). Unsettled questions trail IVF’s success. Science, 345(6198), 744-746. doi:10.1126/science.345.6198.744Skelly, A., Dettori, J., & Brodt, E. (2012). Assessing bias: the importance of considering confounding. Evidence-Based Spine-Care Journal, 3(01), 9-12. doi:10.1055/s-0031-1298595Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228Halliday, J., Lewis, S., Kennedy, J., Burgner, D. P., Juonala, M., Hammarberg, K., … McLachlan, R. (2019). Health of adults aged 22 to 35 years conceived by assisted reproductive technology. Fertility and Sterility, 112(1), 130-139. doi:10.1016/j.fertnstert.2019.03.001Juonala, M., Lewis, S., McLachlan, R., Hammarberg, K., Kennedy, J., Saffery, R., … Halliday, J. (2019). American Heart Association ideal cardiovascular health score and subclinical atherosclerosis in 22–35-year-old adults conceived with and without assisted reproductive technologies. Human Reproduction, 35(1), 232-239. doi:10.1093/humrep/dez240Duranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xDe Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Hargreave, M., Jensen, A., Hansen, M. K., Dehlendorff, C., Winther, J. F., Schmiegelow, K., & Kjær, S. K. (2019). Association Between Fertility Treatment and Cancer Risk in Children. JAMA, 322(22), 2203. doi:10.1001/jama.2019.18037Norrman, E., Petzold, M., Clausen, T. D., Henningsen, A.-K., Opdahl, S., Pinborg, A., … Wennerholm, U.-B. (2020). Type 1 diabetes in children born after assisted reproductive technology: a register-based national cohort study. Human Reproduction, 35(1), 221-231. doi:10.1093/humrep/dez227Rienzi, L., Gracia, C., Maggiulli, R., LaBarbera, A. R., Kaser, D. J., Ubaldi, F. M., … Racowsky, C. (2016). Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Human Reproduction Update. doi:10.1093/humupd/dmw038Arav, A. (2014). Cryopreservation of oocytes and embryos. Theriogenology, 81(1), 96-102. doi:10.1016/j.theriogenology.2013.09.011Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. REPRODUCTION, 141(1), 1-19. doi:10.1530/rep-10-0236Vicente, J. S., & García-Ximénez, F. (1994). Osmotic and cryoprotective effects of a mixture of DMSO and ethylene glycol on rabbit morulae. Theriogenology, 42(7), 1205-1215. doi:10.1016/0093-691x(94)90869-9Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.xBlasco, A., & Gómez, E. (1993). A note on growth curves of rabbit lines selected on growth rate or litter size. Animal Science, 57(2), 332-334. doi:10.1017/s000335610000698xMaertens L., Lebas F., & Szendro ZS. (2010). Rabbit milk: A review of quantity, quality and non-dietary affecting factors. World Rabbit Science, 14(4). doi:10.4995/wrs.2006.565Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9Seki, S., & Mazur, P. (2009). The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology, 59(1), 75-82. doi:10.1016/j.cryobiol.2009.04.012Mazur, P., & Seki, S. (2011). Survival of mouse oocytes after being cooled in a vitrification solution to −196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification. Cryobiology, 62(1), 1-7. doi:10.1016/j.cryobiol.2010.10.159Zhang, X., Catalano, P. N., Gurkan, U. A., Khimji, I., & Demirci, U. (2011). Emerging technologies in medical applications of minimum volume vitrification. Nanomedicine, 6(6), 1115-1129. doi:10.2217/nnm.11.71Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., & Vicente, J. S. (2013). In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology, 79(7), 1124-1129. doi:10.1016/j.theriogenology.2013.02.008Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Riesche, L., & Bartolomei, M. (2018). Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 36(03/04), 240-248. doi:10.1055/s-0038-1676640Tan, K., Wang, Z., Zhang, Z., An, L., & Tian, J. (2016). IVF affects embryonic development in a sex-biased manner in mice. REPRODUCTION, 151(4), 443-453. doi:10.1530/rep-15-0588Tan, K., An, L., Miao, K., Ren, L., Hou, Z., Tao, L., … Tian, J. (2016). Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proceedings of the National Academy of Sciences, 113(12), 3197-3202. doi:10.1073/pnas.1523538113Maalouf, W. E., Mincheva, M. N., Campbell, B. K., & Hardy, I. C. W. (2014). Effects of assisted reproductive technologies on human sex ratio at birth. Fertility and Sterility, 101(5), 1321-1325. doi:10.1016/j.fertnstert.2014.01.041Supramaniam, P. R., Mittal, M., Ohuma, E. O., Lim, L. N., McVeigh, E., Granne, I., & Becker, C. M. (2019). Secondary sex ratio in assisted reproduction: an analysis of 1 376 454 treatment cycles performed in the UK. Human Reproduction Open, 2019(4). doi:10.1093/hropen/hoz020Lin, P.-Y., Huang, F.-J., Kung, F.-T., Wang, L.-J., Chang, S. Y., & Lan, K.-C. (2009). Comparison of the offspring sex ratio between fresh and vitrification-thawed blastocyst transfer. Fertility and Sterility, 92(5), 1764-1766. doi:10.1016/j.fertnstert.2009.05.011Chen, M., Du, J., Zhao, J., Lv, H., Wang, Y., Chen, X., … Ling, X. (2017). The sex ratio of singleton and twin delivery offspring in assisted reproductive technology in China. Scientific Reports, 7(1). doi:10.1038/s41598-017-06152-9Leme, L. O., Carvalho, J. O., Franco, M. M., & Dode, M. A. N. (2020). Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology, 141, 219-227. doi:10.1016/j.theriogenology.2019.05.002Spijkers, S., Lens, J. W., Schats, R., & Lambalk, C. B. (2017). Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecologic and Obstetric Investigation, 82(6), 538-546. doi:10.1159/000468935Chen, L., Ni, X., Xu, Z., Fang, J., Zhang, N., & Li, D. (2020). Effect of frozen and fresh embryo transfers on the birthweight of live-born twins. European Journal of Obstetrics & Gynecology and Reproductive Biology, 246, 50-54. doi:10.1016/j.ejogrb.2020.01.008Uk, A., Collardeau-Frachon, S., Scanvion, Q., Michon, L., & Amar, E. (2018). Assisted Reproductive Technologies and imprinting disorders: Results of a study from a French congenital malformations registry. European Journal of Medical Genetics, 61(9), 518-523. doi:10.1016/j.ejmg.2018.05.017Li, Y., Donnelly, C. G., & Rivera, R. M. (2019). Overgrowth Syndrome. Veterinary Clinics of North America: Food Animal Practice, 35(2), 265-276. doi:10.1016/j.cvfa.2019.02.007Chen, Z., Hagen, D. E., Elsik, C. G., Ji, T., Morris, C. J., Moon, L. E., & Rivera, R. M. (2015). Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proceedings of the National Academy of Sciences, 112(15), 4618-4623. doi:10.1073/pnas.1422088112Mussa, A., Molinatto, C., Cerrato, F., Palumbo, O., Carella, M., Baldassarre, G., … Ferrero, G. B. (2017). Assisted Reproductive Techniques and Risk of Beckwith-Wiedemann Syndrome. Pediatrics, 140(1), e20164311. doi:10.1542/peds.2016-4311Van Heertum, K., & Weinerman, R. (2018). Neonatal outcomes following fresh as compared to frozen/thawed embryo transfer in in vitro fertilization. Birth Defects Research, 110(8), 625-629. doi:10.1002/bdr2.1216Feuer, S. K., Liu, X., Donjacour, A., Lin, W., Simbulan, R. K., Giritharan, G., … Rinaudo, P. F. (2014). Use of a Mouse In Vitro Fertilization Model to Understand the Developmental Origins of Health and Disease Hypothesis. Endocrinology, 155(5), 1956-1969. doi:10.1210/en.2013-2081Marshall, K. L., & Rivera, R. M. (2018). The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Molecular Reproduction and Development, 85(2), 90-105. doi:10.1002/mrd.22951Gordon Baker, H. W. (1998). REPRODUCTIVE EFFECTS OF NONTESTICULAR ILLNESS. Endocrinology and Metabolism Clinics of North America, 27(4), 831-850. doi:10.1016/s0889-8529(05)70043-8Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., & Gutierrez-Adan, A. (2012). Male Mice Produced by In Vitro Culture Have Reduced Fertility and Transmit Organomegaly and Glucose Intolerance to Their Male Offspring1. Biology of Reproduction, 87(2). doi:10.1095/biolreprod.112.100743Belva, F., Bonduelle, M., Roelants, M., Michielsen, D., Van Steirteghem, A., Verheyen, G., & Tournaye, H. (2016). Semen quality of young adult ICSI offspring: the first results. Human Reproduction, 31(12), 2811-2820. doi:10.1093/humrep/dew245Vidal, M., Vellvé, K., González-Comadran, M., Robles, A., Prat, M., Torné, M., … Checa, M. A. (2017). Perinatal outcomes in children born after fresh or frozen embryo transfer: a Catalan cohort study based on 14,262 newborns. Fertility and Sterility, 107(4), 940-947. doi:10.1016/j.fertnstert.2017.01.021Sallem, A., Santulli, P., Barraud-Lange, V., Le Foll, N., Ferreux, L., Maignien, C., … Pocate-Cheriet, K. (2017). Extended culture of poor-quality supernumerary embryos improves ART outcomes. Journal of Assisted Reproduction and Genetics, 35(2), 311-319. doi:10.1007/s10815-017-1063-7Marsico, T. V., Camargo, J. de, Valente, R. S., & Sudano, M. J. (2019). Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction, 16(3), 423-439. doi:10.21451/1984-3143-ar2019-0072Mehdid, A., Martí-De Olives, A., Fernández, N., Rodríguez, M., & Peris, C. (2019). Effect of stress on somatic cell count and milk yield and composition in goats. Research in Veterinary Science, 125, 61-70. doi:10.1016/j.rvsc.2019.05.015Sinclair, K. D., Rutherford, K. M. D., Wallace, J. M., Brameld, J. M., Stöger, R., Alberio, R., … Dwyer, C. M. (2016). Epigenetics and developmental programming of welfare and production traits in farm animals. Reproduction, Fertility and Development, 28(10), 1443. doi:10.1071/rd16102Siqueira, L. G. B., Dikmen, S., Ortega, M. S., & Hansen, P. J. (2017). Postnatal phenotype of dairy cows is altered by in vitro embryo production using reverse X-sorted semen. Journal of Dairy Science, 100(7), 5899-5908. doi:10.3168/jds.2016-12539Mahsoudi, B., Li, A., & O’Neill, C. (2007). Assessment of the Long-Term and Transgenerational Consequences of Perturbing Preimplantation Embryo Development in Mice1. Biology of Reproduction, 77(5), 889-896. doi:10.1095/biolreprod.106.057885Del Ciampo, L., & Del Ciampo, I. (2018). Breastfeeding and the Benefits of Lactation for Women’s Health. Revista Brasileira de Ginecologia e Obstetrícia / RBGO Gynecology and Obstetrics, 40(06), 354-359. doi:10.1055/s-0038-1657766Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016Auroux, M. (2000). Long-term effects in progeny of paternal environment and of gamete/embryo cryopreservation. Human Reproduction Update, 6(6), 550-563. doi:10.1093/humupd/6.6.55

    Draft Genome Sequences of 12 Monophasic Salmonella enterica subsp. enterica Serotype Typhimurium 1,4,[5], 12:i:- Strains Isolated from Wild Griffon Vultures in Eastern Spain

    Full text link
    [EN] Monophasic Salmonella enterica subsp. enterica serovar Typhimurium is one of the most common zoonotic pathogens. Salmonella species reside in a wide variety of hosts, including wild animals. Thus, we report here the genome sequences of 12 monophasic S. Typhimurium strains isolated from healthy wild vultures to gain better insight into their epidemiology and host-pathogen interactions.This work was funded by Generalitat Valenciana (Government of Valencia) and by CEU-UCH (Consolidacion de Indicadores INDI15/16, INDI16/20, and INDI17/25).Marín, C.; D'auria, G.; Martínez-Priego, L.; Marco-Jiménez, F. (2019). Draft Genome Sequences of 12 Monophasic Salmonella enterica subsp. enterica Serotype Typhimurium 1,4,[5], 12:i:- Strains Isolated from Wild Griffon Vultures in Eastern Spain. Microbiology Resource Announcements. 8(42):1-3. https://doi.org/10.1128/MRA.00570-19S13842Blanco, G. (2018). Supplementary feeding as a source of multiresistantSalmonellain endangered Egyptian vultures. Transboundary and Emerging Diseases, 65(3), 806-816. doi:10.1111/tbed.12806Krawiec, M., Kuczkowski, M., Kruszewicz, A., & Wieliczko, A. (2015). Prevalence and genetic characteristics of Salmonella in free-living birds in Poland. BMC Veterinary Research, 11(1), 15. doi:10.1186/s12917-015-0332-xMolina-López, R. A., Vidal, A., Obón, E., Martín, M., & Darwich, L. (2015). Multidrug-resistantSalmonella entericaSerovar Typhimurium Monophasic Variant 4,12:i:- Isolated from Asymptomatic Wildlife in a Catalonian Wildlife Rehabilitation Center, Spain. Journal of Wildlife Diseases, 51(3), 759-763. doi:10.7589/2015-01-019Marin, C., Torres, C., Marco-Jiménez, F., Cerdà-Cuéllar, M., Sevilla, S., Ayats, T., & Vega, S. (2018). Supplementary feeding stations for conservation of vultures could be an important source of monophasic Salmonella typhimurium 1,4,[5],12:i:-. Science of The Total Environment, 636, 449-455. doi:10.1016/j.scitotenv.2018.04.310Marin, C., Palomeque, M.-D., Marco-Jiménez, F., & Vega, S. (2014). Wild Griffon Vultures (Gyps fulvus) as a Source of Salmonella and Campylobacter in Eastern Spain. PLoS ONE, 9(4), e94191. doi:10.1371/journal.pone.0094191Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863-864. doi:10.1093/bioinformatics/btr026Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842. doi:10.1093/bioinformatics/btq033Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. doi:10.1093/bioinformatics/btu153Lima, T., Auchincloss, A. H., Coudert, E., Keller, G., Michoud, K., Rivoire, C., … Bairoch, A. (2009). HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Research, 37(Database), D471-D478. doi:10.1093/nar/gkn661Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., … Bateman, A. (2015). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44(D1), D279-D285. doi:10.1093/nar/gkv1344Seribelli, A. A., Frazão, M. R., Gonzales, J. C., Cao, G., Leon, M. S., Kich, J. D., … Falcão, J. P. (2018). Draft Genome Sequences of 20 Salmonella enterica subsp. enterica Serovar Typhimurium Strains Isolated from Swine in Santa Catarina, Brazil. Genome Announcements, 6(16), e00232-18. doi:10.1128/genomea.00232-1

    Procrastination: the poor time management among university students

    Full text link
    [EN] Academic procrastination is a fact related to the delay or postpone of academic work until last minute. This phenomenon is evident in a vast majority of university students, and its occurrence is increasing. In order to analyse possible causes and/or solutions, we studied if longer time for accomplishing an assignment incentives or avoids procrastination among university students. Results showed that both short and long time-frame groups tended to procrastinate in the same way. Additionally, academic grades did not revealed differences between groups, as the procrastination was the same between groups. Thus, this study shows that even with longer period of time to accomplish a task, university students tend to procrastinate, and thus seem to have a negative effect on their assignment grades. Therefore, it seems a current problem and measures should be developed in order to solve it.This project has received funding from the Vicerectorado de Estudios, Calidad y Acreditación of the Universitat Politècnica de València (UPV) under Proyectos de Innovación y Mejora Educativa programme (PIME/2017/B/010) and the School of Agricultural Engineering and Environment (ETSIAMN) of the Universitat Politècnica de València (UPV).http://ocs.editorial.upv.es/index.php/HEAD/HEAD18Naturil-Alfonso, C.; Peñaranda, D.; Vicente, J.; Marco-Jiménez, F. (2018). Procrastination: the poor time management among university students. Editorial Universitat Politècnica de València. 1-8. https://doi.org/10.4995/HEAD18.2018.8167OCS111518115

    Technical Note: Design of a large variable temperature chamber for heat stress studies in rabbits

    Full text link
    [EN] One of the major constraint factors for rabbit production consists of the environmental conditions and especially high temperatures that negatively affect reproduction and growth performance. For this reason, several studies have addressed the effects of heat stress and possible solutions to alleviate its impact on rabbit performance. This article describes the design and operating features of a large temperature chamber (13x4.7x3.1 m) configured to house 42 rabbits. The probes consisted of temperature sensor model DS2438 and humidity sensor model HIH-5031. The system was controlled by an Arduino platform programmed by its Integrated Development Environment (IDE) software. The system takes a decision every minute: it connects the heating if the temperature is lower than programmed and connects exhaust fans if the temperature is over the programmed setting. To renew the indoor air, every 5 min the system switches off the heating and switches on the exhaust fans for 15 sec. Two experiments (with and without animals) were carried out to test the temperature control accuracy. Firstly, without animals, two tests were performed: (i) adjusting the temperature of the climatic chamber to the control house temperature plus 10ºC and (ii) based on daily minimum (32ºC) and maximum (37ºC) temperatures. Secondly, with animals, does were maintained (i) between a daily minimum (32ºC) and maximum (37ºC) for 48 h and (ii) between a daily minimum (25ºC) and maximum (35ºC) temperatures for 105 d. Mortality rates were noted in both tests. The results of comparing the measured temperature deviation from programmed temperature reported a coefficient of determination of 0.9850 and 0.9947, for plus 10ºC and 32-37ºC curves, respectively. In the animal tests, the determination coefficients were 0.9926 and 0.9928 for programmed curve in the range of 32 to 37ºC and 0.9859, 0.9900 and 0.9901 for programmed curve in the range of 25 to 35ºC. Survival of females in the temperature chamber was as expected for reproductive rabbit does: 100 and 82% in the 2 and 105 d trials, respectively. Results indicate that the chamber provided precise temperature control for the development of heat stress studies in rabbits.This work was supported by the Spanish Research Project (CICYT AGL2008-03274) and the Spanish "Ministry of Science and Innovation" HAR2010-21944-C02-01 and HAR2010-21944-C02-02.García Diego, FJ.; Pascual Amorós, JJ.; Marco Jiménez, F. (2011). Technical Note: Design of a large variable temperature chamber for heat stress studies in rabbits. World Rabbit Science. 19(4). https://doi.org/10.4995/wrs.2011.938SWORD19

    Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model

    Full text link
    [EN] This study was conducted to demonstrate how a vitrified embryo transfer procedure incurs phenotypic and molecular changes throughout life. This study reports the first evidence describing that embryonic manipulation during a vitrified embryo transfer cycle induced molecular modifications, concerning oxidative phosphorylation and dysregulations in zinc and lipid metabolism in liver tissue, which has been reported as responsible for postnatal variations of the phenotype. Nowadays, assisted reproductive technologies (ARTs) are considered valuable contributors to our past, but a future without their use is inconceivable. However, in recent years, several studies have evidenced a potential impact of ART on long-term development in mammal species. To date, the long-term follow-up data are still limited. So far, studies have mainly focused on in vitro fertilization or in vitro culture, with information from gametes/embryos cryopreservation field being practically missing. Herein, we report an approach to determine whether a vitrified embryo transfer procedure would have long-term consequences on the offspring. Using the rabbit as a model, we compared animals derived from vitrified-transferred embryos versus those naturally conceived, studying the growth performance, plus the weight throughout life, and the internal organs/tissues phenotype. The healthy status was assessed over the hematological and biochemical parameters in peripheral blood. Additionally, a comparative proteomic analysis was conducted in the liver tissue to investigate molecular cues related to vitrified embryo transfer in an adult tissue. After vitrified embryo transfer, birth weight was increased, and the growth performance was diminished in a sex-specific manner. In addition, vitrified-transferred animals showed significantly lower body, liver and heart weights in adulthood. Molecular analyses revealed that vitrified embryo transfer triggers reprogramming of the liver proteome. Functional analysis of the differentially expressed proteins showed changes in relation to oxidative phosphorylation and dysregulations in the zinc and lipid metabolism, which has been reported as possible causes of a disturbed growth pattern. Therefore, we conclude that vitrified embryo transfer is not a neutral procedure, and it incurs long-term effects in the offspring both at phenotypic and molecular levels. These results described a striking example of the developmental plasticity exhibited by the mammalian embryo.Funding from the Ministry of Economy, Industry and Competitiveness (Research project: AGL2017-85162-C2-1-R and AGL2014-53405-C2-1-P) is acknowledged. X.G.D. was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429).Garcia-Dominguez, X.; Marco-Jiménez, F.; Peñaranda, D.; Vicente Antón, JS. (2020). Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals. 10(6):1-16. https://doi.org/10.3390/ani10061043S116106Crawford, G., & Ledger, W. (2018). In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG: An International Journal of Obstetrics & Gynaecology, 126(2), 237-243. doi:10.1111/1471-0528.15526Findlay, J. K., Holland, M. K., & Wong, B. B. M. (2019). Reproductive science and the future of the planet. Reproduction, 158(3), R91-R96. doi:10.1530/rep-18-0640Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xFeuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xDuranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9Belva, F., Bonduelle, M., Roelants, M., Michielsen, D., Van Steirteghem, A., Verheyen, G., & Tournaye, H. (2016). Semen quality of young adult ICSI offspring: the first results. Human Reproduction, 31(12), 2811-2820. doi:10.1093/humrep/dew245Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016Feuer, S. K., Liu, X., Donjacour, A., Lin, W., Simbulan, R. K., Giritharan, G., … Rinaudo, P. F. (2014). Use of a Mouse In Vitro Fertilization Model to Understand the Developmental Origins of Health and Disease Hypothesis. Endocrinology, 155(5), 1956-1969. doi:10.1210/en.2013-2081Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589Fischer, B., Chavatte-Palmer, P., Viebahn, C., Navarrete Santos, A., & Duranthon, V. (2012). Rabbit as a reproductive model for human health. REPRODUCTION, 144(1), 1-10. doi:10.1530/rep-12-0091Servick, K. (2014). Unsettled questions trail IVF’s success. Science, 345(6198), 744-746. doi:10.1126/science.345.6198.744De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Zucker, I., & Beery, A. K. (2010). Males still dominate animal studies. Nature, 465(7299), 690-690. doi:10.1038/465690aKineman, R. D., del Rio-Moreno, M., & Sarmento-Cabral, A. (2018). 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. Journal of Molecular Endocrinology, 61(1), T187-T198. doi:10.1530/jme-18-0076Adamek, A., & Kasprzak, A. (2018). Insulin-Like Growth Factor (IGF) System in Liver Diseases. International Journal of Molecular Sciences, 19(5), 1308. doi:10.3390/ijms19051308Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025Ding, C., Li, Y., Guo, F., Jiang, Y., Ying, W., Li, D., … He, F. (2016). A Cell-type-resolved Liver Proteome. Molecular & Cellular Proteomics, 15(10), 3190-3202. doi:10.1074/mcp.m116.060145Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850-858. doi:10.1021/ac950914hShilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., … Schaeffer, D. A. (2007). The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. Molecular & Cellular Proteomics, 6(9), 1638-1655. doi:10.1074/mcp.t600050-mcp200Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., … Vizcaíno, J. A. (2018). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47(D1), D442-D450. doi:10.1093/nar/gky1106Moore, D. M., Zimmerman, K., & Smith, S. A. (2015). Hematological Assessment in Pet Rabbits. Clinics in Laboratory Medicine, 35(3), 617-627. doi:10.1016/j.cll.2015.05.010MA Kamel, R. (2013). Assisted Reproductive Technology after the birth of Louise Brown. Gynecology & Obstetrics, 03(03). doi:10.4172/2161-0932.1000156Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010Cifre, J., Baselga, M., Gómez, E. A., & de la Luz, G. M. (1999). Effect of embryo cryopreservation techniques on reproductive and growth traits in rabbits. Annales de Zootechnie, 48(1), 15-24. doi:10.1051/animres:19990102Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Spijkers, S., Lens, J. W., Schats, R., & Lambalk, C. B. (2017). Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecologic and Obstetric Investigation, 82(6), 538-546. doi:10.1159/000468935Hann, M., Roberts, S. A., D’Souza, S. W., Clayton, P., Macklon, N., & Brison, D. R. (2018). The growth of assisted reproductive treatment-conceived children from birth to 5 years: a national cohort study. BMC Medicine, 16(1). doi:10.1186/s12916-018-1203-7Chen, Z., Robbins, K. M., Wells, K. D., & Rivera, R. M. (2013). Large offspring syndrome. Epigenetics, 8(6), 591-601. doi:10.4161/epi.24655Gidenne, T., Combes, S., Feugier, A., Jehl, N., Arveux, P., Boisot, P., … Verdelhan, S. (2009). Feed restriction strategy in the growing rabbit. 2. Impact on digestive health, growth and carcass characteristics. Animal, 3(4), 509-515. doi:10.1017/s1751731108003790Velazquez, M. A., Sheth, B., Smith, S. J., Eckert, J. J., Osmond, C., & Fleming, T. P. (2018). Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(2), 590-600. doi:10.1016/j.bbadis.2017.11.020Donjacour, A., Liu, X., Lin, W., Simbulan, R., & Rinaudo, P. F. (2014). In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1. Biology of Reproduction, 90(4). doi:10.1095/biolreprod.113.113134Mahsoudi, B., Li, A., & O’Neill, C. (2007). Assessment of the Long-Term and Transgenerational Consequences of Perturbing Preimplantation Embryo Development in Mice1. Biology of Reproduction, 77(5), 889-896. doi:10.1095/biolreprod.106.057885Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., Jimenez, A., Perez-Crespo, M., Ramirez, M. A., … Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proceedings of the National Academy of Sciences, 101(16), 5880-5885. doi:10.1073/pnas.0308560101Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., & Gutierrez-Adan, A. (2012). Male Mice Produced by In Vitro Culture Have Reduced Fertility and Transmit Organomegaly and Glucose Intolerance to Their Male Offspring1. Biology of Reproduction, 87(2). doi:10.1095/biolreprod.112.100743Riesche, L., & Bartolomei, M. (2018). Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 36(03/04), 240-248. doi:10.1055/s-0038-1676640Hyatt, M. A., Budge, H., & Symonds, M. E. (2008). Early developmental influences on hepatic organogenesis. Organogenesis, 4(3), 170-175. doi:10.4161/org.4.3.6849Møller, S., & Bernardi, M. (2013). Interactions of the heart and the liver. European Heart Journal, 34(36), 2804-2811. doi:10.1093/eurheartj/eht246Peterside, I. E., Selak, M. A., & Simmons, R. A. (2003). Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. American Journal of Physiology-Endocrinology and Metabolism, 285(6), E1258-E1266. doi:10.1152/ajpendo.00437.2002Von Kleist-Retzow, J.-C., Cormier-Daire, V., Viot, G., Goldenberg, A., Mardach, B., Amiel, J., … De Lonlay, P. (2003). Antenatal manifestations of mitochondrial respiratory chain deficiency. The Journal of Pediatrics, 143(2), 208-212. doi:10.1067/s0022-3476(03)00130-6Hüttemann, M., Lee, I., Samavati, L., Yu, H., & Doan, J. W. (2007). Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1773(12), 1701-1720. doi:10.1016/j.bbamcr.2007.10.001Gibson, K., Halliday, J. L., Kirby, D. M., Yaplito-Lee, J., Thorburn, D. R., & Boneh, A. (2008). Mitochondrial Oxidative Phosphorylation Disorders Presenting in Neonates: Clinical Manifestations and Enzymatic and Molecular Diagnoses. PEDIATRICS, 122(5), 1003-1008. doi:10.1542/peds.2007-3502Abu-Libdeh, B., Douiev, L., Amro, S., Shahrour, M., Ta-Shma, A., Miller, C., … Saada, A. (2017). Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. European Journal of Human Genetics, 25(10), 1142-1146. doi:10.1038/ejhg.2017.112Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., & Iwata, H. (2018). Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLOS ONE, 13(10), e0204571. doi:10.1371/journal.pone.0204571Singh, A., Prasad, K. N., Singh, A. K., Singh, S. K., Gupta, K. K., Paliwal, V. K., … Gupta, R. K. (2016). Human Glutathione S-Transferase Enzyme Gene Polymorphisms and Their Association With Neurocysticercosis. Molecular Neurobiology, 54(4), 2843-2851. doi:10.1007/s12035-016-9779-4Almazroo, O. A., Miah, M. K., & Venkataramanan, R. (2017). Drug Metabolism in the Liver. Clinics in Liver Disease, 21(1), 1-20. doi:10.1016/j.cld.2016.08.001Bird, A. J. (2015). Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. The Journal of Nutritional Biochemistry, 26(11), 1103-1115. doi:10.1016/j.jnutbio.2015.08.002Xia, X., Jiang, S.-W., Zhang, Y., Hu, Y., Yi, H., Liu, J., … Liu, J. (2019). Serum levels of trace elements in children born after assisted reproductive technology. Clinica Chimica Acta, 495, 664-669. doi:10.1016/j.cca.2018.09.032Li, B., Xiao, X., Chen, S., Huang, J., Ma, Y., Tang, N., … Wang, X. (2016). Changes of Phospholipids in Fetal Liver of Mice Conceived by In Vitro Fertilization1. Biology of Reproduction, 94(5). doi:10.1095/biolreprod.115.136325Guo, X.-Y., Liu, X.-M., Jin, L., Wang, T.-T., Ullah, K., Sheng, J.-Z., & Huang, H.-F. (2017). Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertility and Sterility, 107(3), 622-631.e5. doi:10.1016/j.fertnstert.2016.12.007Miles, H. L., Hofman, P. L., Peek, J., Harris, M., Wilson, D., Robinson, E. M., … Cutfield, W. S. (2007). In Vitro Fertilization Improves Childhood Growth and Metabolism. The Journal of Clinical Endocrinology & Metabolism, 92(9), 3441-3445. doi:10.1210/jc.2006-246

    Recipient maternal genotypes improved the litter size components of a paternal line involved in a MOET programme in rabbits

    Full text link
    [EN] An essential factor in the success of multiple ovulation and embryo transfer programmes (MOET) in any species is the selection of the recipient females. In rabbit there is a notable lack of studies on the effects of recipient genotype on postnatal growth. The aim of this study was to evaluate the effects of recipient maternal genotypes on litter size components within a MOET programme applied to a commercial paternal line that appears to have exhausted its selection programme after 37 generations. The experiment was designed using 13 nulliparous donors from the R line (paternal line) to produce 453 embryos, which were transferred to two recipient maternal genotypes (A and V lines) and the own donor paternal line (R line). Litter size components and pre-and postnatal body mass of kits were evaluated. The differences between the genetic groups of recipients were estimated using a general linear model applying Bayesian analysis. The results showed that maternal lines have a high capacity to implant the embryos, maintain the pregnancy and present a favourable environment for embryo development compared to the R line. Specifically, A line dams showed the highest prenatal survival, total born and number born alive without effects on growth traits. The present study demonstrated the applicability of a MOET programme based on maternal ability recipients to improve the number of kits per cycle. Therefore, to allow the genetic improvement programme of meat rabbits to continue using the R line, we recommended applying for a MOET programme as a routine procedure.This research was supported by the projects: Spanish Research project AGL2014-53405-C2-1-P Interministerial Committee on Science and TechnologyRagab, M.; Valdés-Hernández, J.; Vicente Antón, JS.; Marco-Jiménez, F. (2022). Recipient maternal genotypes improved the litter size components of a paternal line involved in a MOET programme in rabbits. Italian Journal of Animal Science. 21(1):1584-1592. https://doi.org/10.1080/1828051X.2022.21421671584159221

    Feed restriction regime in a rabbit line selected for growth rate alters oocyte maturation manifested by alteration in msy2 gene expression

    Full text link
    [EN] Young rabbit females selected for growth rate may have nutritional needs, which may not be met with the common practice of feed restriction during rearing in commercial rabbit production. The aim of this study was to analyse whether two different feeding programmes: ad libitum or restricted (130 g/day) feeding, applied in young rabbit females for 1 month at the end of rearing, could modulate the origin of ovulation process and the quality of the oocytes. At 16 weeks of age, 34 females were randomly assigned to restricted or ad libitum feeding, maintaining these conditions for a month. Then, in an initial experiment, transcriptional profiling of hypothalamus-hypophysis tissue was performed to assess failure to ovulate. In the second experiment, the gene expression analysis of some candidate genes related to oocytes quality was performed. Our results demonstrated that neither of the two feeding programmes modified the transcription of hypothalamus-hypophysis tissue, while the only differences in MSYR expression were found in in vivo mature oocytes ready for successful fertilization. Specifically, MSYR was over-expressed in oocytes from females fed ad libitum. MSYR is one of the most abundant proteins in the oocyte and has proven to be a key regulator of maternal RNA transcription and translation. This finding suggests that MSYR gene is a promising gene in our understanding of the relationship between high growth rate and reproductive performance decline.This work was supported by the Spanish Research Projects AGL2014-53405-C2-P and AGL2011-30170-C02-01 (CICYT). Carmen Naturil was supported by a research grant from the Education Ministry of the Valencian Regional Government (programme VALi+d. ACIF/2013/296).Naturil Alfonso, C.; Peñaranda, D.; Vicente Antón, JS.; Marco-Jiménez, F. (2017). Feed restriction regime in a rabbit line selected for growth rate alters oocyte maturation manifested by alteration in msy2 gene expression. Reproduction in Domestic Animals. 52(6):976-984. https://doi.org/10.1111/rda.13006S976984526Alexander, B. M., Kiyma, Z., McFarland, M., Van Kirk, E. A., Hallford, D. M., Hawkins, D. E., … Moss, G. E. (2007). Influence of short-term fasting during the luteal phase of the estrous cycle on ovarian follicular development during the ensuing proestrus of ewes. Animal Reproduction Science, 97(3-4), 356-363. doi:10.1016/j.anireprosci.2006.01.012Armstrong, D. G., McEvoy, T. G., Baxter, G., Robinson, J. J., Hogg, C. O., Woad, K. J., … Sinclair, K. D. (2001). Effect of Dietary Energy and Protein on Bovine Follicular Dynamics and Embryo Production In Vitro: Associations with the Ovarian Insulin-Like Growth Factor System1. Biology of Reproduction, 64(6), 1624-1632. doi:10.1095/biolreprod64.6.1624Ashworth, C. J., Beattie, L., & Antipatis, C. (1999). Effects of pre- and post-mating nutritional status on hepatic function, progesterone concentration, uterine protein secretion and embryo survival in Meishan pigs. Reproduction, Fertility and Development, 11(1), 67. doi:10.1071/rd99007Ashworth, C. J., Beattie, L., Antipatis, C., & Vallet, J. L. (1999). Effects of pre- and post-mating feed intake on blastocyst size, secretory function and glucose metabolism in Meishan gilts. Reproduction, Fertility and Development, 11(6), 323. doi:10.1071/rd99040Balasubramanian, P., Jagannathan, L., Mahaley, R. E., Subramanian, M., Gilbreath, E. T., MohanKumar, P. S., & MohanKumar, S. M. J. (2012). High Fat Diet Affects Reproductive Functions in Female Diet-Induced Obese and Dietary Resistant Rats. Journal of Neuroendocrinology, 24(5), 748-755. doi:10.1111/j.1365-2826.2011.02276.xBoland, M. P., Lonergan, P., & O’Callaghan, D. (2001). Effect of nutrition on endocrine parameters, ovarian physiology, and oocyte and embryo development. Theriogenology, 55(6), 1323-1340. doi:10.1016/s0093-691x(01)00485-xBrecchia, G., Bonanno, A., Galeati, G., Federici, C., Maranesi, M., Gobbetti, A., … Boiti, C. (2006). Hormonal and metabolic adaptation to fasting: Effects on the hypothalamic–pituitary–ovarian axis and reproductive performance of rabbit does. Domestic Animal Endocrinology, 31(2), 105-122. doi:10.1016/j.domaniend.2005.09.006Daoud, N. M., Mahrous, K. F., & Ezzo, O. H. (2012). Feed restriction as a biostimulant of the production of oocyte, their quality and GDF-9 gene expression in rabbit oocytes. Animal Reproduction Science, 136(1-2), 121-127. doi:10.1016/j.anireprosci.2012.09.011De la Fuente, L. F., & Rosell, J. M. (2012). Body weight and body condition of breeding rabbits in commercial units1. Journal of Animal Science, 90(9), 3252-3258. doi:10.2527/jas.2011-4764Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527Ferguson, E., Ashworth, C., Edwards, S., Hawkins, N., Hepburn, N., & Hunter, M. (2003). Effect of different nutritional regimens before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction, 61-71. doi:10.1530/rep.0.1260061García-García, R. M., Rebollar, P. G., Arias-Álvarez, M., Sakr, O. G., Bermejo-Álvarez, P., Brecchia, G., … Lorenzo, P. L. (2011). Acute fasting before conception affects metabolic and endocrine status without impacting follicle and oocyte development and embryo gene expression in the rabbit. Reproduction, Fertility and Development, 23(6), 759. doi:10.1071/rd10298Gerke, V., Creutz, C. E., & Moss, S. E. (2005). Annexins: linking Ca2+ signalling to membrane dynamics. Nature Reviews Molecular Cell Biology, 6(6), 449-461. doi:10.1038/nrm1661Gerstner, J. R., & Landry, C. F. (2006). Expression of the Transcriptional Coactivator CITED1 in the Adult and Developing Murine Brain. Developmental Neuroscience, 29(3), 203-212. doi:10.1159/000096389Gil, S. Y., Youn, B.-S., Byun, K., Huang, H., Namkoong, C., Jang, P.-G., … Kim, M.-S. (2013). Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway. Nature Communications, 4(1). doi:10.1038/ncomms2896Gu, W., Tekur, S., Reinbold, R., Eppig, J. J., Choi, Y.-C., Zheng, J. Z., … Hecht, N. B. (1998). Mammalian Male and Female Germ Cells Express a Germ Cell-Specific Y-Box Protein, MSY21. Biology of Reproduction, 59(5), 1266-1274. doi:10.1095/biolreprod59.5.1266Haider, S., & Knöfler, M. (2009). Human Tumour Necrosis Factor: Physiological and Pathological Roles in Placenta and Endometrium. Placenta, 30(2), 111-123. doi:10.1016/j.placenta.2008.10.012Han, J., & Townes-Anderson, E. (2012). Cell Specific Post-Translational Processing of Pikachurin, A Protein Involved in Retinal Synaptogenesis. PLoS ONE, 7(12), e50552. doi:10.1371/journal.pone.0050552Jung, U., & Choi, M.-S. (2014). Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 15(4), 6184-6223. doi:10.3390/ijms15046184Kiyma, Z., Alexander, B. M., Van Kirk, E. A., Murdoch, W. J., Hallford, D. M., & Moss, G. E. (2004). Effects of feed restriction on reproductive and metabolic hormones in ewes. Journal of Animal Science, 82(9), 2548-2557. doi:10.2527/2004.8292548xLabrecque, R., Vigneault, C., Blondin, P., & Sirard, M.-A. (2014). Gene expression analysis of bovine oocytes at optimal coasting time combined with GnRH antagonist during the no-FSH period. Theriogenology, 81(8), 1092-1100. doi:10.1016/j.theriogenology.2014.01.037Leali, D., Inforzato, A., Ronca, R., Bianchi, R., Belleri, M., Coltrini, D., … Presta, M. (2012). Long Pentraxin 3/Tumor Necrosis Factor-Stimulated Gene-6 Interaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(3), 696-703. doi:10.1161/atvbaha.111.243998Llobat, L., Marco-Jiménez, F., Peñaranda, D., Saenz-de-Juano, M., & Vicente, J. (2011). Effect of Embryonic Genotype on Reference Gene Selection for RT-qPCR Normalization. Reproduction in Domestic Animals, 47(4), 629-634. doi:10.1111/j.1439-0531.2011.01934.xMartin, B., Golden, E., Carlson, O. D., Egan, J. M., Mattson, M. P., & Maudsley, S. (2008). Caloric restriction: Impact upon pituitary function and reproduction. Ageing Research Reviews, 7(3), 209-224. doi:10.1016/j.arr.2008.01.002Martínez-Paredes, E., Ródenas, L., Pascual, J. J., Blas, E., Brecchia, G., Boiti, C., & Cervera, C. (2015). Effects of rearing feeding programme on the young rabbit females’ behaviour and welfare indicators. World Rabbit Science, 23(3), 197. doi:10.4995/wrs.2015.3987McEvoy, T. G., Robinson, J. J., Aitken, R. P., Findlay, P. A., Palmer, R. M., & Robertson, I. S. (1995). Dietary-induced suppression of pre-ovulatory progesterone concentrations in superovulated ewes impairs the subsequent in vivo and in vitro development of their ova. Animal Reproduction Science, 39(2), 89-107. doi:10.1016/0378-4320(95)01392-dMoussa, M., Shu, J., Zhang, X. H., & Zeng, F. (2015). Maternal control of oocyte quality in cattle «a review». Animal Reproduction Science, 155, 11-27. doi:10.1016/j.anireprosci.2015.01.011Naturil-Alfonso, C., Lavara, R., Millán, P., Rebollar, P. G., Vicente, J. S., & Marco-Jiménez, F. (2016). Study of failures in a rabbit line selected for growth rate. World Rabbit Science, 24(1), 47. doi:10.4995/wrs.2016.4016Naturil-Alfonso, C., Lavara, R., Vicente, J., & Marco-Jiménez, F. (2015). Effects of Female Dietary Restriction in a Rabbit Growth Line During Rearing on Reproductive Performance and Embryo Quality. Reproduction in Domestic Animals, 51(1), 114-122. doi:10.1111/rda.12653Naturil-Alfonso, C., Marco-Jiménez, F., Jiménez-Trigos, E., Saenz-de-Juano, M., Viudes-de-Castro, M., Lavara, R., & Vicente, J. (2015). Role of Embryonic and Maternal Genotype on Prenatal Survival and Foetal Growth in Rabbit. Reproduction in Domestic Animals, 50(2), 312-320. doi:10.1111/rda.12493O’Callaghan, D., Yaakub, H., Hyttel, P., Spicer, L., & Boland, M. (2000). Effect of nutrition and superovulation on oocyte morphology, follicular fluid composition and systemic hormone concentrations in ewes. Reproduction, 118(2), 303-313. doi:10.1530/jrf.0.1180303Papadopoulos, S., Lonergan, P., Gath, V., Quinn, K. M., Evans, A. C. O., O’Callaghan, D., & Boland, M. P. (2001). Effect of diet quantity and urea supplementation on oocyte and embryo quality in sheep. Theriogenology, 55(5), 1059-1069. doi:10.1016/s0093-691x(01)00466-6Pascual, J. J., Castella, F., Cervera, C., Blas, E., & Fernández-Carmona, J. (2000). The use of ultrasound measurement of perirenal fat thickness to estimate changes in body condition of young female rabbits. Animal Science, 70(3), 435-442. doi:10.1017/s135772980005178xRomanatto, T., Cesquini, M., Amaral, M. E., Roman, É. A., Moraes, J. C., Torsoni, M. A., … Velloso, L. A. (2007). TNF-α acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient—Effects on leptin and insulin signaling pathways. Peptides, 28(5), 1050-1058. doi:10.1016/j.peptides.2007.03.006Rommers, J. M., Meijerhof, R., Noordhuizen, J. P. T. M., & Kemp, B. (2004). Effect of feeding program during rearing and age at first insemination on performances during subsequent reproduction in young rabbit does. Reproduction Nutrition Development, 44(4), 321-332. doi:10.1051/rnd:2004037Smith, J. T., Acohido, B. V., Clifton, D. K., & Steiner, R. A. (2006). KiSS-1 Neurones Are Direct Targets for Leptin in the ob/ob Mouse. Journal of Neuroendocrinology, 18(4), 298-303. doi:10.1111/j.1365-2826.2006.01417.xSzendrő, Z., Szendrő, K., & Zotte, A. D. (2012). Management of Reproduction on Small, Medium and Large Rabbit Farms: A Review. Asian-Australasian Journal of Animal Sciences, 25(5), 738-748. doi:10.5713/ajas.2012.12015Vicente, J. S., Llobat, L., Viudes-de-Castro, M. P., Lavara, R., Baselga, M., & Marco-Jiménez, F. (2012). Gestational losses in a rabbit line selected for growth rate. Theriogenology, 77(1), 81-88. doi:10.1016/j.theriogenology.2011.07.019Vicente, J. S., María Pilar Viudes-De-Castro, María de la Luz García, & Baselga, M. (2003). Effect of rabbit line on a program of cryopreserved embryos by vitrification. Reproduction Nutrition Development, 43(2), 137-143. doi:10.1051/rnd:2003011Viudes-de-Castro, M. P., & Vicente, J. S. (1997). Effect of sperm count on the fertility and prolificity rates of meat rabbits. Animal Reproduction Science, 46(3-4), 313-319. doi:10.1016/s0378-4320(96)01628-4Wulf, P., & Suter, U. (1999). Embryonic expression of epithelial membrane protein 1 in early neurons. Developmental Brain Research, 116(2), 169-180. doi:10.1016/s0165-3806(99)00092-9Xiccato, G., & Trocino, A. (s. f.). Energy and protein metabolism and requirements. Nutrition of the rabbit, 83-118. doi:10.1079/9781845936693.0083Yan, J., Zhou, B., Yang, J., Tai, P., Chen, X., Zhang, H., … Xia, G. (2008). Glucose can reverse the effects of acute fasting on mouse ovulation and oocyte maturation. Reproduction, Fertility and Development, 20(6), 703. doi:10.1071/rd08034Yu, J., Deng, M., Medvedev, S., Yang, J., Hecht, N. B., & Schultz, R. M. (2004). Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility. Developmental Biology, 268(1), 195-206. doi:10.1016/j.ydbio.2003.12.020Yu, J., Hecht, N. B., & Schultz, R. M. (2001). Expression of MSY2 in Mouse Oocytes and Preimplantation Embryos1. Biology of Reproduction, 65(4), 1260-1270. doi:10.1095/biolreprod65.4.126

    State of actin cytoskeleton and development of slow-frozen and vitrified rabbit pronuclear zygotes

    Full text link
    [EN] This study was focused on the effect of cryopreservation on the state of actin cytoskeleton and development of rabbit pronuclear zygotes. Zygotes were collected from superovulated females and immediately used for 1) slow-freezing in a solution containing 1.5 M 1,2-propanediol and 0.2 M sucrose, or 2) vitrification in a solution containing 42.0% (v/v) of ethylene glycol, 18.0% (w/v) of dextran and 0.3 M sucrose as cryoprotectants. After thawing or warming, respectively, zygotes were evaluated for 1) actin distribution, 2) in vitro or 3) in vivo development to blastocyst. Comparing actin filaments distribution, a significantly higher number of vitrified zygotes with actin distributed in cell border was observed (55 ± 7.7 vs. 74 ± 6.1% for slow-frozen vs. vitrified, respectively). After 24 and 72 h of in vitro development, significant differences in the cleavage and morula rate among the groups were observed (9 ± 2.4 and 3 ± 1.3 vs. 44 ± 3.0 and 28 ± 2.7% for slow-frozen vs. vitrified, respectively). None of the slow-frozen zygotes reached the blastocyst stage, in contrast to the vitrified counterparts (11 ± 1.9%). Under in vivo culture conditions, a significant difference in blastocyst rate was observed between vitrified and fresh embryos (6 ± 1.5 vs. 35 ± 4.4% respectively). Our results showed that alterations in actin cytoskeleton and deteriorated development are more evident in slow-frozen than vitrified pronuclear zygotes. Vitrification method seems to be a more effective option for rabbit zygotes cryopreservation, although pronuclear zygotes manipulation per se resulted in a notable decrease in embryo development.This research was supported by the projects: UGAVIII/16/2015, VEGA 1/0611/15, by the Spanish Research project AGL2014-53405-C2-1-PComision Interministerial de Ciencia y Tecnologia (CICYT), Generalitat Valenciana research program (Prometeo II 2014/036), grant of Slovak Research and Development Agency: APVV-14-0043 and by the European Community under project no 26220220180: Building Research Centre "AgroBioTech". B. Kulikova received fellowship from a Collaborative European Network on Rabbit Genome Biology (RGB-Net) (COST-STSM-TD1101)Kulikova, B.; Jiménez-Trigos, ME.; Makarevich, AV.; Chrenek, P.; Vicente Antón, JS.; Marco-Jiménez, F. (2016). State of actin cytoskeleton and development of slow-frozen and vitrified rabbit pronuclear zygotes. Cryobiology. 72(1):14-20. https://doi.org/10.1016/j.cryobiol.2015.11.009142072
    corecore