31 research outputs found

    Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium

    Get PDF
    We have developed a new technique to study the integrity, morphology and functionality of the retinal neurons and the retinal pigment epithelium (RPE). Young and old control albino (Sprague-Dawley) and pigmented (Piebald Virol Glaxo) rats, and dystrophic albino (P23H-1) and pigmented (Royal College of Surgeons) rats received a single intravitreal injection of 3% Fluorogold (FG) and their retinas were analyzed from 5 minutes to 30 days later. Retinas were imaged in vivo with SD-OCT and ex vivo in flat-mounts and in cross-sections. Fifteen minutes and 24 hours after intravitreal administration of FG retinal neurons and the RPE, but no glial cells, were labeled with FG-filled vesicles. The tracer reached the RPE 15 minutes after FG administration, and this labeling remained up to 30 days. Tracing for 15 minutes or 24 hours did not cause oxidative stress. Intraretinal tracing delineated the pathological retinal remodelling occurring in the dystrophic strains. The RPE of the P23H-1 strain was highly altered in aged animals, while the RPE of the RCS strain, which is unable to phagocytose, did not accumulate the tracer even at young ages when the retinal neural circuit is still preserved. In both dystrophic strains, the RPE cells were pleomorphic and polymegathic.This study was supported by the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional “Una manera de hacer Europa” (PI16/00031, PI16/00380, PI19/00071, PI19/00203, SAF2015-67643-P, RD16/0008, RD16/0008/0026 and RD16/0008/0016) and by the Fundación Séneca, Agencia de Ciencia y Tecnología Región de Murcia (19881/GERM/15)

    Potential role of P2X7 receptor in neurodegenerative processes in a murine model of glaucoma

    Get PDF
    Glaucoma is a common cause of visual impairment and blindness, characterized by retinal ganglion cell (RGC) death. The mechanisms that trigger the development of glaucoma remain unknown and have gained significant relevance in the study of this neurodegenerative disease. P2X7 purinergic receptors (P2X7R) could be involved in the regulation of the synaptic transmission and neuronal death in the retina through different pathways. The aim of this study was to characterize the molecular signals underlying glaucomatous retinal injury. The time-course of functional, morphological, and molecular changes in the glaucomatous retina of the DBA/2J mice were investigated. The expression and localization of P2X7R was analysed in relation with retinal markers. Caspase-3, JNK, and p38 were evaluated in control and glaucomatous mice by immunohistochemical and western-blot analysis. Furthermore, electroretinogram recordings (ERG) were performed to assess inner retina dysfunction. Glaucomatous mice exhibited changes in P2X7R expression as long as the pathology progressed. There was P2X7R overexpression in RGCs, the primary injured neurons, which correlated with the loss of function through ERG measurements. All analyzed MAPK and caspase-3 proteins were upregulated in the DBA/2J retinas suggesting a pro-apoptotic cell death. The increase in P2X7Rs presence may contribute, together with other factors, to the changes in retinal functionality and the concomitant death of RGCs. These findings provide evidence of possible intracellular pathways responsible for apoptosis regulation during glaucomatous degeneration

    Short- and Long-Term Study of the Impact of Focal Blue Light-Emitting Diode-Induced Phototoxicity in Adult Albino Rats

    No full text
    Background: In adult rats we study the short- and long-term effects of focal blue light-emitting diode (LED)-induced phototoxicity (LIP) on retinal thickness and Iba-1+ activation. Methods: The left eyes of previously dark-adapted Sprague Dawley (SD) rats were photoexposed to a blue LED (20 s, 200 lux). In vivo longitudinal monitoring of retinal thickness, fundus images, and optical retinal sections was performed from 1 to 30 days (d) after LIP with SD-OCT. Ex vivo, we analysed the population of S-cone and Iba-1+ cells within a predetermined fixed-size circular area (PCA) centred on the lesion. Results: LIP resulted in a circular focal lesion readily identifiable in vivo by fundus examination, which showed within the PCAs a progressive thinning of the outer retinal layer, and a diminution of the S-cone population to 19% by 30 d. In parallel to S-cone loss, activated Iba-1+ cells delineated the lesioned area and acquired an ameboid morphology with peak expression at 3 d after LIP. Iba-1+ cells adopted a more relaxed-branched morphology at 7 d and by 14–30 d their morphology was fully branched. Conclusion: LIP caused a progressive reduction of the outer retina with loss of S cones and a parallel dynamic activation of microglial cells in the lesioned area

    Ly6c as a New Marker of Mouse Blood Vessels: Qualitative and Quantitative Analyses on Intact and Ischemic Retinas

    No full text
    Ly6c is an antigen commonly used to differentiate between classical and non-classical monocytes/macrophages. Here we show its potential as a marker of the mouse vasculature, particularly of the retinal vascular plexuses. Ly6c was immunodetected in several tissues of C57BL/6 mice using isolectin IB4 as the control of vasculature staining. In the retina, Ly6c expression was analyzed qualitatively and quantitatively in intact, ischemic, and contralateral retinas from 0 to 30 days after the insult. Ly6c expression was observed in all organs and tissues tested, with a brighter signal and more homogeneous staining than the IB4. In the retinas, Ly6c was well expressed, allowing a detailed study of their anatomy. The three retinal plexuses were morphologically different, and from the superficial to the deep one occupied 15 ± 2, 24 ± 7, and 38 ± 1.4 percent of the retinal surface, respectively. In the injured retinas, there was extravasation of the classically activated monocyte/macrophages (Ly6chigh) and the formation of new vessels in the superficial plexus, increasing the area occupied by it to 25 ± 1%. In the contralateral retinas, the superficial plexus area decreased gradually, reaching significance at 30 days, and Ly6c expression progressively disappeared in the intermediate and deep plexuses. Although the role of Ly6c in vascular endothelial cell function is still not completely understood, we demonstrate here that Ly6c can be used as a new specific marker of the mouse vasculature and to assess, qualitatively and quantitatively, vascular changes in health and disease

    Rod-like microglia are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye.

    Get PDF
    In the mouse model of unilateral laser-induced ocular hypertension (OHT) the microglia in both the treated and the normotensive untreated contralateral eye have morphological signs of activation and up-regulation of MHC-II expression in comparison with naĂŻve. In the brain, rod-like microglia align to less-injured neurons in an effort to limit damage. We investigate whether: i) microglial activation is secondary to laser injury or to a higher IOP and; ii) the presence of rod-like microglia is related to OHT. Three groups of mice were used: age-matched control (naĂŻve, n=15); and two lasered: limbal (OHT, n=15); and non-draining portion of the sclera (scleral, n=3). In the lasered animals, treated eyes as well as contralateral eyes were analysed. Retinal whole-mounts were immunostained with antibodies against, Iba-1, NF-200, MHC-II, CD86, CD68 and Ym1. In the scleral group (normal ocular pressure) no microglial signs of activation were found. Similarly to naĂŻve eyes, OHT-eyes and their contralateral eyes had ramified microglia in the nerve-fibre layer related to the blood vessel. However, only eyes with OHT had rod-like microglia that aligned end-to-end, coupling to form trains of multiple cells running parallel to axons in the retinal surface. Rod-like microglia were CD68+ and were related to retinal ganglion cells (RGCs) showing signs of degeneration (NF-200+RGCs). Although MHC-II expression was up-regulated in the microglia of the NFL both in OHT-eyes and their contralateral eyes, no expression of CD86 and Ym1 was detected in ramified or in rod-like microglia. After 15 days of unilateral lasering of the limbal and the non-draining portion of the sclera, activated microglia was restricted to OHT-eyes and their contralateral eyes. However, rod-like microglia were restricted to eyes with OHT and degenerated NF-200+RGCs and were absent from their contralateral eyes. Thus, rod-like microglia seem be related to the neurodegeneration associated with HTO

    Effects of ocular hypertension in the visual system of pigmented mice.

    No full text
    To study the effects of ocular hypertension (OHT) on the visual system of C57BL/6 pigmented mice, the limbal and episcleral veins of the left eye were laser photocoagulated (LP). LP increased the intraocular pressure during the first five days (d), reaching basal values at 7d. To investigate the effect of OHT on the retinal ganglion cell (RGC) retrograde axonal transport, hydroxistilbamidine methanesulfonate (OHSt) was applied to both superior colliculi (SCi) and the retinas were dissected 2 or 4 weeks after LP. To determine RGC survival, these same retinas were immunoreacted against Brn3a (general RGC population) and melanopsin (intrinsically photosensitive RGCs, m+RGCs). To study whether OHT affected non-RGC neurons in the ganglion cell layer (GCL), RGCs were immunodetected with Brn3a and all GCL nuclei counterstained with DAPI in a group of animals examined 4 weeks post-LP. Innervation of the SCi was examined at 10 days, 8 or 14 weeks after LP with the orthogradely transported cholera toxin subunit-B. OHT resulted in diffuse and sectorial loss of OHSt+RGCs (50% at 2 weeks and 62% at 4 weeks) and in a comparable loss of Brn3a+RGCs at the same time intervals. m+RGCs decreased to 59% at 2 weeks and to 46% at 4 weeks, such loss was diffuse, did not parallel the sectorial loss of the general RGC population and was more severe in the superior-temporal retina. In the GCL, cell loss is selective for RGCs and does not affect other non-RGC neurons. The retinotectal innervation appeared significantly reduced at 10 days (55.7%) and did not progress further up to 14 weeks (46.6%). Thus, LP-induced OHT results in retrograde degeneration of RGCs and m+RGCs, as well as in the loss of CTB-labelled retinotectal terminals

    Pigment Epithelium-Derived Factor (PEDF) Fragments Prevent Mouse Cone Photoreceptor Cell Loss Induced by Focal Phototoxicity In Vivo

    No full text
    Here, we evaluated the effects of PEDF (pigment epithelium-derived factor) and PEDF peptides on cone-photoreceptor cell damage in a mouse model of focal LED-induced phototoxicity (LIP) in vivo. Swiss mice were dark-adapted overnight, anesthetized, and their left eyes were exposed to a blue LED placed over the cornea. Immediately after, intravitreal injection of PEDF, PEDF-peptide fragments 17-mer, 17-mer[H105A] or 17-mer[R99A] (all at 10 pmol) were administered into the left eye of each animal. BDNF (92 pmol) and bFGF (27 pmol) injections were positive controls, and vehicle negative control. After 7 days, LIP resulted in a consistent circular lesion located in the supratemporal quadrant and the number of S-cones were counted within an area centered on the lesion. Retinas treated with effectors had significantly greater S-cone numbers (PEDF (60%), 17-mer (56%), 17-mer [H105A] (57%), BDNF (64%) or bFGF (60%)) relative to their corresponding vehicle groups (≈42%). The 17-mer[R99A] with no PEDF receptor binding and no neurotrophic activity, PEDF combined with a molar excess of the PEDF receptor blocker P1 peptide, or with a PEDF-R enzymatic inhibitor had undetectable effects in S-cone survival. The findings demonstrated that the cone survival effects were mediated via interactions between the 17-mer region of the PEDF molecule and its PEDF-R receptor

    Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension

    No full text
    Glaucoma, one of the leading causes of blindness worldwide, affects primarily retinal ganglion cells (RGCs) and their axons. The pathophysiology of glaucoma is not fully understood, but it is currently believed that damage to RGC axons at the optic nerve head plays a major role. Rodent models to study glaucoma include those that mimic either ocular hypertension or optic nerve injury. Here we review the anatomical loss of the general population of RGCs (that express Brn3a; Brn3a+RGCs) and of the intrinsically photosensitive RGCs (that express melanopsin; m+RGCs) after chronic (LP-OHT) or acute (A-OHT) ocular hypertension and after complete intraorbital optic nerve transection (ONT) or crush (ONC). Our studies show that all of these insults trigger RGC death. Compared to Brn3a+RGCs, m+RGCs are more resilient to ONT, ONC, and A-OHT but not to LP-OHT. There are differences in the course of RGC loss both between these RGC types and among injuries. An important difference between the damage caused by ocular hypertension or optic nerve injury appears in the outer retina. Both axotomy and LP-OHT induce selective loss of RGCs but LP-OHT also induces a protracted loss of cone photoreceptors. This review outlines our current understanding of the anatomical changes occurring in rodent models of glaucoma and discusses the advantages of each one and their translational value
    corecore