108 research outputs found

    Ultraviolet cutoffs for quantum fields in cosmological spacetimes

    Get PDF
    We analyze critically the renormalization of quantum fields in cosmological spacetimes, using non covariant ultraviolet cutoffs. We compute explicitly the counterterms necessary to renormalize the semiclassical Einstein equations, using comoving and physical ultraviolet cutoffs. In the first case, the divergences renormalize bare conserved fluids, while in the second case it is necessary to break the covariance of the bare theory. We point out that, in general, the renormalized equations differ from those obtained with covariant methods, even after absorbing the infinities and choosing the renormalized parameters to force the consistency of the renormalized theory. We repeat the analysis for the evolution equation for the mean value of an interacting scalar fieldComment: 19 pages. Minor changes. References adde

    Radiation from a moving planar dipole layer: patch potentials vs dynamical Casimir effect

    Get PDF
    We study the classical electromagnetic radiation due to the presence of a dipole layer on a plane that performs a bounded motion along its normal direction, to the first non-trivial order in the amplitude of that motion. We show that the total emitted power may be written in terms of the dipole layer autocorrelation function. We then apply the general expression for the emitted power to cases where the dipole layer models the presence of patch potentials, comparing the magnitude of the emitted radiation with that coming from the quantum vacuum in the presence of a moving perfect conductor (dynamical Casimir effect).Comment: 5 pages, no figure

    On the renormalization procedure for quantum fields with modified dispersion relation in curved spacetimes

    Full text link
    We review our recent results on the renormalization procedure for a free quantum scalar field with modified dispersion relations in curved spacetimes. For dispersion relations containing up to 2s2s powers of the spatial momentum, the subtraction necessary to renormalize and and depends on ss. We first describe our previous analysis for spatially flat Friedman-Robertson-Walker and Bianchi type I metrics. Then we present a new power counting analysis for general background metrics in the weak field approximation.Comment: Talk given at the 7th Alexander Friedmann International Seminar on Gravitation and Cosmology, Joao Pessoa, Brazil, July 200

    Quantum corrections to the geodesic equation

    Get PDF
    In this talk we will argue that, when gravitons are taken into account, the solution to the semiclassical Einstein equations (SEE) is not physical. The reason is simple: any classical device used to measure the spacetime geometry will also feel the graviton fluctuations. As the coupling between the classical device and the metric is non linear, the device will not measure the `background geometry' (i.e. the geometry that solves the SEE). As a particular example we will show that a classical particle does not follow a geodesic of the background metric. Instead its motion is determined by a quantum corrected geodesic equation that takes into account its coupling to the gravitons. This analysis will also lead us to find a solution to the so-called gauge fixing problem: the quantum corrected geodesic equation is explicitly independent of any gauge fixing parameter.Comment: Revtex file, 6 pages, no figures. Talk presented at the meeting "Trends in Theoretical Physics II", Buenos Aires, Argentina, December 199
    • …
    corecore