12 research outputs found

    Entanglement of low-energy excitations in Conformal Field Theory

    Full text link
    In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behaviour depending on the central charge. In this letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the n-th Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.Comment: 4 pages, 3 figure

    Universal behavior of the Shannon and Rényi mutual information of quantum critical chains

    Get PDF
    We study the Shannon and Rényi mutual information (MI) in the ground state (GS) of different critical quantum spin chains. Despite the apparent basis dependence of these quantities we show the existence of some particular basis (we will call them conformal basis) whose finite-size scaling function is related to the central charge c of the underlying conformal field theory of the model. In particular, we verified that for large index n, the MI of a subsystem of size ℓ in a periodic chain with L sites behaves as (c/4)(n/n-1)ln[(L/π)sin(πℓ/L)], when the ground-state wave function is expressed in these special conformal basis. This is in agreement with recent predictions. For generic local basis, we will show that, although in some cases 'b IND. n'ln[(L/π)sin(πℓ/L)] is a good fit to our numerical data, in general, there is no direct relation between bn and the central charge of the system. We will support our findings with detailed numerical calculations for the transverse field Ising model, Q=3,4 quantum Potts chain, quantum Ashkin-Teller chain, and the XXZ quantum chain. We will also present some additional results of the Shannon mutual information (n=1), for the parafermionic ZQ quantum chains with Q=5,6,7, and 8.FAPESPCNP

    Entanglement of excited states in critical spin chians

    Full text link
    Renyi and von Neumann entropies quantifying the amount of entanglement in ground states of critical spin chains are known to satisfy a universal law which is given by the Conformal Field Theory (CFT) describing their scaling regime. This law can be generalized to excitations described by primary fields in CFT, as was done in reference (Alcaraz et. al., Phys. Rev. Lett. 106, 201601 (2011)), of which this work is a completion. An alternative derivation is presented, together with numerical verifications of our results in different models belonging to the c=1,1/2 universality classes. Oscillations of the Renyi entropy in excited states and descendant fields are also discussed.Comment: 23 pages, 13 figure

    Spin systems in two dimensions and Gauge theories in four dimensions with Z(N) symmetry

    No full text
    Usando uma transformação de dualidade generalizada, considerações de simetria e supondo que as superfície críticas sejam contínuas, obtivemos o dia grama de fase para sistemas de spins Z (N) bidimensionais e sistemas com invariança de calibre Z (N) a quatro dimensões. Caracterizamos as diversas fases dos sistemas de spins pelo valor esperado das potências dos operadores de ordem e desordem. No sistema com invariança de calibre, por outro lado, estas fases caracterizadas pelo comportamento do valor esperado das potências das alças de Wilson e de \'t Hooft. Obtivemos para ambos os sistemas fases moles em que no caso de spins 2D (calibre 4D) todas as potências dos parâmetros de ordem e desordem ( todas as potências das alças de Wilson e \'t Hooft) são nulas (exibem decaimento com o perímetro da alça). Enquanto no sistema com invariança de calibre todas as combinações de decaimento (área ou perímetro) das alças de Wilson e \'t Hooft são permitidas, as relações de comutação no sistema de spins proíbe a existência de fases em que tanto o parâmetro de ordem como o de desordem são não nulos (exceto quando estes operadores comutam). Apresentamos por completeza as relações de dualidade para sistemas de calibre Z (N) com campos de Higgs a três dimensões.Using a generalized duality transformation, symetry considerations and assuming that criticality is continuous in the system?s parameters, we obtain the phase diagram for two-dimensional Z (N) spins system?s and four-dimensional gauge Z (N) system\'s. For spins system we characterize the various phases by the expectation value of powers of the order and disorder operators. For gauge systems, on the other hand, the characterization is via decay law of powers of Wilson and \'t Hooft loops. We obtain soft phases for both systems, with the folowing, behaviour: for spins system all powers of order and disorder parameters vanish, whereas for gauge systems all powers of Wilson and \'t Hooft loops decay like the perimeter. Whereas all combinations of area and perimeter decay are allowed for Wilson\'s and \'t Hooft\'s loops, the Z (N) commutation relations for spin systems forbid the simultaneous non-vanishing of order and disorder parameters (except when these operators commute). For completeness we include the duality relations for three-dimensional gauge plus Higgs Z(N) systems

    Spin systems in two dimensions and Gauge theories in four dimensions with Z(N) symmetry

    No full text
    Usando uma transformação de dualidade generalizada, considerações de simetria e supondo que as superfície críticas sejam contínuas, obtivemos o dia grama de fase para sistemas de spins Z (N) bidimensionais e sistemas com invariança de calibre Z (N) a quatro dimensões. Caracterizamos as diversas fases dos sistemas de spins pelo valor esperado das potências dos operadores de ordem e desordem. No sistema com invariança de calibre, por outro lado, estas fases caracterizadas pelo comportamento do valor esperado das potências das alças de Wilson e de \'t Hooft. Obtivemos para ambos os sistemas fases moles em que no caso de spins 2D (calibre 4D) todas as potências dos parâmetros de ordem e desordem ( todas as potências das alças de Wilson e \'t Hooft) são nulas (exibem decaimento com o perímetro da alça). Enquanto no sistema com invariança de calibre todas as combinações de decaimento (área ou perímetro) das alças de Wilson e \'t Hooft são permitidas, as relações de comutação no sistema de spins proíbe a existência de fases em que tanto o parâmetro de ordem como o de desordem são não nulos (exceto quando estes operadores comutam). Apresentamos por completeza as relações de dualidade para sistemas de calibre Z (N) com campos de Higgs a três dimensões.Using a generalized duality transformation, symetry considerations and assuming that criticality is continuous in the system?s parameters, we obtain the phase diagram for two-dimensional Z (N) spins system?s and four-dimensional gauge Z (N) system\'s. For spins system we characterize the various phases by the expectation value of powers of the order and disorder operators. For gauge systems, on the other hand, the characterization is via decay law of powers of Wilson and \'t Hooft loops. We obtain soft phases for both systems, with the folowing, behaviour: for spins system all powers of order and disorder parameters vanish, whereas for gauge systems all powers of Wilson and \'t Hooft loops decay like the perimeter. Whereas all combinations of area and perimeter decay are allowed for Wilson\'s and \'t Hooft\'s loops, the Z (N) commutation relations for spin systems forbid the simultaneous non-vanishing of order and disorder parameters (except when these operators commute). For completeness we include the duality relations for three-dimensional gauge plus Higgs Z(N) systems

    Precise determination of quantum critical points by the violation of the entropic area law

    No full text
    Finite-size scaling analysis turns out to be a powerful tool to calculate the phase diagram as well as the critical properties of two-dimensional classical statistical mechanics models and quantum Hamiltonians in one dimension. The most used method to locate quantum critical points is the so-called crossing method, where the estimates are obtained by comparing the mass gaps of two distinct lattice sizes. The success of this method is due to its simplicity and the ability to provide accurate results even considering relatively small lattice sizes. In this paper, we introduce an estimator that locates quantum critical points by exploring the known distinct behavior of the entanglement entropy in critical and noncritical systems. As a benchmark test, we use this new estimator to locate the critical point of the quantum Ising chain and the critical line of the spin-1 Blume-Capel quantum chain. The tricritical point of this last model is also obtained. Comparison with the standard crossing method is also presented. The method we propose is simple to implement in practice, particularly in density matrix renormalization group calculations, and provides us, like the crossing method, amazingly accurate results for quite small lattice sizes. Our applications show that the proposed method has several advantages, as compared with the standard crossing method, and we believe it will become popular in future numerical studies.FAPEMIGFAPESPCNP

    The exact solution of the asymmetric exclusion problem with particles of arbitrary size: matrix product ansatz

    No full text
    Submitted by Samira Fernandes ([email protected]) on 2011-09-29T23:19:34Z No. of bitstreams: 1 The exact solution of the asymmetric exclusion problem with particles of arbitrary size matrix product ansatz.pdf: 202893 bytes, checksum: 4ec7227219ad5431b6a90671065955b3 (MD5)Approved for entry into archive by Sabrina Andrade([email protected]) on 2011-09-30T01:23:43Z (GMT) No. of bitstreams: 1 The exact solution of the asymmetric exclusion problem with particles of arbitrary size matrix product ansatz.pdf: 202893 bytes, checksum: 4ec7227219ad5431b6a90671065955b3 (MD5)Made available in DSpace on 2011-09-30T01:23:43Z (GMT). No. of bitstreams: 1 The exact solution of the asymmetric exclusion problem with particles of arbitrary size matrix product ansatz.pdf: 202893 bytes, checksum: 4ec7227219ad5431b6a90671065955b3 (MD5) Previous issue date: 2003The exact solution of the asymmetric exclusion problem and several of its generalizations is obtained by a matrix product ansatz. Due to the similarity of the master equation and the Schr¨odinger equation at imaginary times the solution of these problems reduces to the diagonalization of a one dimensional quantum Hamiltonian. Initially, we present the solution of the problem when an arbitrary mixture of molecules, each of then having an arbitrary size (s = 0; 1; 2; : : :) in units of lattice spacing, diffuses asymmetrically on the lattice. The solution of the more general problem where we have the diffusion of particles belonging to N distinct classes of particles (c = 1; : : : ;N), with hierarchical order and arbitrary sizes, is also presented. Our matrix product ansatz asserts that the amplitudes of an arbitrary eigenfunction of the associated quantum Hamiltonian can be expressed by a product of matrices. The algebraic properties of the matrices defining the ansatz depend on the particular associated Hamiltonian. The absence of contradictions in the algebraic relations defining the algebra ensures the exact integrability of the model. In the case of particles distributed in N > 2 classes, the associativity of this algebra implies the Yang-Baxter relations of the exact integrable model

    The exact solution of the asymmetric exclusion problem with particles of arbitrary size: matrix product ansatz

    No full text
    The exact solution of the asymmetric exclusion problem and several of its generalizations is obtained by a matrix product ansatz. Due to the similarity of the master equation and the Schr¨odinger equation at imaginary times the solution of these problems reduces to the diagonalization of a one dimensional quantum Hamiltonian. Initially, we present the solution of the problem when an arbitrary mixture of molecules, each of then having an arbitrary size (s = 0; 1; 2; : : :) in units of lattice spacing, diffuses asymmetrically on the lattice. The solution of the more general problem where we have the diffusion of particles belonging to N distinct classes of particles (c = 1; : : : ;N), with hierarchical order and arbitrary sizes, is also presented. Our matrix product ansatz asserts that the amplitudes of an arbitrary eigenfunction of the associated quantum Hamiltonian can be expressed by a product of matrices. The algebraic properties of the matrices defining the ansatz depend on the particular associated Hamiltonian. The absence of contradictions in the algebraic relations defining the algebra ensures the exact integrability of the model. In the case of particles distributed in N > 2 classes, the associativity of this algebra implies the Yang-Baxter relations of the exact integrable model

    Shared information in stationary states of stochastic processes

    No full text
    We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.FAPESPCNPq (Brazilian Agencies)ARCDeutsche Forschungsgemeinschaft - DF
    corecore