21,025 research outputs found

    Massive MIMO Full-Duplex Relaying with Optimal Power Allocation for Independent Multipairs

    Get PDF
    With the help of an in-band full-duplex relay station, it is possible to simultaneously transmit and receive signals from multiple users. The performance of such system can be greatly increased when the relay station is equipped with a large number of antennas on both transmitter and receiver sides. In this paper, we exploit the use of massive arrays to effectively suppress the loopback interference (LI) of a decode-and-forward relay (DF) and evaluate the performance of the end-to-end (e2e) transmission. This paper assumes imperfect channel state information is available at the relay and designs a minimum mean-square error (MMSE) filter to mitigate the interference. Subsequently, we adopt zero-forcing (ZF) filters for both detection and beamforming. The performance of such system is evaluated in terms of bit error rate (BER) at both relay and destinations, and an optimal choice for the transmission power at the relay is shown. We then propose a complexity efficient optimal power allocation (OPA) algorithm that, using the channel statistics, computes the minimum power that satisfies the rate constraints of each pair. The results obtained via simulation show that when both MMSE filtering and OPA method are used, better values for the energy efficiency are attained.Comment: Accepted to the 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications - SPAWC, Stockholm, Sweden 201

    Stability of a two-sublattice spin-glass model

    Full text link
    We study the stability of the replica-symmetric solution of a two-sublattice infinite-range spin-glass model, which can describe the transition from antiferromagnetic to spin glass state. The eigenvalues associated with replica-symmetric perturbations are in general complex. The natural generalization of the usual stability condition is to require the real part of these eigenvalues to be positive. The necessary and sufficient conditions for all the roots of the secular equation to have positive real parts is given by the Hurwitz criterion. The generalized stability condition allows a consistent analysis of the phase diagram within the replica-symmetric approximation.Comment: 21 pages, 5 figure

    Effect of inelasticity on the phase transitions of a thin vibrated granular layer

    Full text link
    We describe an experimental and computational investigation of the ordered and disordered phases of a vibrating thin, dense granular layer composed of identical metal spheres. We compare the results from spheres with different amounts of inelasticity and show that inelasticity has a strong effect on the phase diagram. We also report the melting of an ordered phase to a homogeneous disordered liquid phase at high vibration amplitude or at large inelasticities. Our results show that dissipation has a strong effect on ordering and that in this system ordered phases are absent entirely in highly inelastic materials.Comment: 5 pages, 5 figures, published in Physical Review E. Title of first version slightly change

    Full-Duplex Relaying in MIMO-OFDM Frequency-Selective Channels with Optimal Adaptive Filtering

    Get PDF
    In-band full-duplex transmission allows a relay station to theoretically double its spectral efficiency by simultaneously receiving and transmitting in the same frequency band, when compared to the traditional half-duplex or out-of-band full-duplex counterpart. Consequently, the induced self-interference suffered by the relay may reach considerable power levels, which decreases the signal-to-interference-plus-noise ratio (SINR) in a decode-and-forward (DF) relay, leading to a degradation of the relay performance. This paper presents a technique to cope with the problem of self-interference in broadband multiple-input multiple-output (MIMO) relays. The proposed method uses a time-domain cancellation in a DF relay, where a replica of the interfering signal is created with the help of a recursive least squares (RLS) algorithm that estimates the interference frequency-selective channel. Its convergence mean time is shown to be negligible by simulation results, when compared to the length of a typical orthogonal-frequency division multiplexing (OFDM) sequences. Moreover, the bit-error-rate (BER) and the SINR in a OFDM transmission are evaluated, confirming that the proposed method extends significantly the range of self-interference power to which the relay is resilient to, when compared with other mitigation schemes
    corecore