768 research outputs found

    Intracellular DNA replication and differentiation of Trypanosoma cruzi is asynchronous within individual host cells in vivo at all stages of infection.

    Get PDF
    Investigations into intracellular replication and differentiation of Trypanosoma cruzi within the mammalian host have been restricted by limitations in our ability to detect parasitized cells throughout the course of infection. We have overcome this problem by generating genetically modified parasites that express a bioluminescent/fluorescent fusion protein. By combining in vivo imaging and confocal microscopy, this has enabled us to routinely visualise murine infections at the level of individual host cells. These studies reveal that intracellular parasite replication is an asynchronous process, irrespective of tissue location or disease stage. Furthermore, using TUNEL assays and EdU labelling, we demonstrate that within individual infected cells, replication of both mitochondrial (kDNA) and nuclear genomes is not co-ordinated within the parasite population, and that replicating amastigotes and non-replicating trypomastigotes can co-exist in the same cell. Finally, we report the presence of distinct non-canonical morphological forms of T. cruzi in the mammalian host. These appear to represent transitional forms in the amastigote to trypomastigote differentiation process. Therefore, the intracellular life-cycle of T. cruzi in vivo is more complex than previously realised, with potential implications for our understanding of disease pathogenesis, immune evasion and drug development. Dissecting the mechanisms involved will be an important experimental challenge

    Biological factors that impinge on Chagas disease drug development.

    Get PDF
    Chagas disease is caused by infection with the insect-transmitted protozoan Trypanosoma cruzi, and is the most important parasitic infection in Latin America. The current drugs, benznidazole and nifurtimox, are characterized by limited efficacy and toxic side-effects, and treatment failures are frequently observed. The urgent need for new therapeutic approaches is being met by a combined effort from the academic and commercial sectors, together with major input from not-for-profit drug development consortia. With the disappointing outcomes of recent clinical trials against chronic Chagas disease, it has become clear that an incomplete understanding of parasite biology and disease pathogenesis is impacting negatively on the development of more effective drugs. In addition, technical issues, including difficulties in establishing parasitological cure in both human patients and animal models, have greatly complicated the assessment of drug efficacy. Here, we outline the major questions that need to be addressed and discuss technical innovations that can be exploited to accelerate the drug development pipeline

    Exploiting Genetically Modified Dual-Reporter Strains to Monitor Experimental Trypanosoma cruzi Infections and Host-Parasite Interactions.

    Get PDF
    Trypanosoma cruzi is the causative agent of Chagas disease, the most important parasitic infection in Latin America. Despite a global research effort, there have been no significant treatment advances for at least 40 years. Gaps in our knowledge of T. cruzi biology and pathogenesis have been major factors in limiting progress. In addition, the extremely low parasite burden during chronic infections has complicated the monitoring of both disease progression and drug efficacy, even in predictive animal models. To address these problems, we genetically modified T. cruzi to express a red-shifted luciferase. Mice infected with these highly bioluminescent parasites can be monitored by in vivo imaging, with exquisite sensitivity. However, a major drawback of bioluminescence imaging is that it does not allow visualization of host-parasite interactions at a cellular level. To facilitate this, we generated T. cruzi strains that express a chimeric protein that is both bioluminescent and fluorescent. Bioluminescence allows the tissue location of infection foci to be identified, and fluorescence can then be exploited to detect parasites in histological sections derived from excised tissue. In this article, we describe in detail the in vivo imaging and confocal microscopy protocols that we have developed for visualizing T. cruzi parasites expressing these dual-reporter fusion proteins. The approaches make it feasible to locate individual parasites within chronically infected murine tissues, to assess their replicative status, to resolve the nature of host cells, and to characterize their immunological context

    In Vivo Analysis of Trypanosoma cruzi Persistence Foci at Single-Cell Resolution.

    Get PDF
    Infections with Trypanosoma cruzi are usually lifelong despite generating a strong adaptive immune response. Identifying the sites of parasite persistence is therefore crucial to understanding how T. cruzi avoids immune-mediated destruction. However, this is a major technical challenge, because the parasite burden during chronic infections is extremely low. Here, we describe an integrated approach involving comprehensive tissue processing, ex vivo imaging, and confocal microscopy, which allowed us to visualize infected host cells in murine tissue with exquisite sensitivity. Using bioluminescence-guided tissue sampling, with a detection level of 200 parasites, which we term mega-nests. In contrast, during the acute stage, when the total parasite burden is considerably higher and many cells are infected, nests containing >50 parasites are rarely found. In C3H/HeN mice, but not BALB/c mice, we identified skeletal muscle as a major site of persistence during the chronic stage, with most parasites being found in large mega-nests within the muscle fibers. Finally, we report that parasites are also frequently found in the skin during chronic murine infections, often in multiple infection foci. In addition to being a site of parasite persistence, this anatomical reservoir could play an important role in insect-mediated transmission and have implications for drug development.IMPORTANCE Trypanosoma cruzi causes Chagas disease, the most important parasitic infection in Latin America. Major pathologies include severe damage to the heart and digestive tract, although symptoms do not usually appear until decades after infection. Research has been hampered by the complex nature of the disease and technical difficulties in locating the extremely low number of parasites. Here, using highly sensitive imaging technology, we reveal the sites of parasite persistence during chronic-stage infections of experimental mice at single-cell resolution. We show that parasites are frequently located in smooth muscle cells in the circular muscle layer of the colon and that skeletal muscle cells and the skin can also be important reservoirs. This information provides a framework for investigating how the parasite is able to survive as a lifelong infection, despite a vigorous immune response. It also informs drug development strategies by identifying tissue sites that must be accessed to achieve a curative outcome

    Drug-cured experimental Trypanosoma cruzi infections confer long-lasting and cross-strain protection.

    Get PDF
    BACKGROUND: The long term and complex nature of Chagas disease in humans has restricted studies on vaccine feasibility. Animal models also have limitations due to technical difficulties in monitoring the extremely low parasite burden that is characteristic of chronic stage infections. Advances in imaging technology offer alternative approaches that circumvent these problems. Here, we describe the use of highly sensitive whole body in vivo imaging to assess the efficacy of recombinant viral vector vaccines and benznidazole-cured infections to protect mice from challenge with Trypanosoma cruzi. METHODOLOGY/PRINCIPAL FINDINGS: Mice were infected with T. cruzi strains modified to express a red-shifted luciferase reporter. Using bioluminescence imaging, we assessed the degree of immunity to re-infection conferred after benznidazole-cure. Those infected for 14 days or more, prior to the onset of benznidazole treatment, were highly protected from challenge with both homologous and heterologous strains. There was a >99% reduction in parasite burden, with parasites frequently undetectable after homologous challenge. This level of protection was considerably greater than that achieved with recombinant vaccines. It was also independent of the route of infection or size of the challenge inoculum, and was long-lasting, with no significant diminution in immunity after almost a year. When the primary infection was benznidazole-treated after 4 days (before completion of the first cycle of intracellular infection), the degree of protection was much reduced, an outcome associated with a minimal T. cruzi-specific IFN-?+ T cell response. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that a protective Chagas disease vaccine must have the ability to eliminate parasites before they reach organs/tissues, such as the GI tract, where once established, they become largely refractory to the induced immune response

    Benznidazole treatment leads to DNA damage in Trypanosoma cruzi and the persistence of rare widely dispersed non-replicative amastigotes in mice.

    Get PDF
    Benznidazole is the front-line drug used to treat infections with Trypanosoma cruzi, the causative agent of Chagas disease. However, for reasons that are unknown, treatment failures are common. When we examined parasites that survived benznidazole treatment in mice using highly sensitive in vivo and ex vivo bioluminescence imaging, we found that recrudescence is not due to persistence of parasites in a specific organ or tissue that preferentially protects them from drug activity. Surviving parasites are widely distributed and located in host cells where the vast majority contained only one or two amastigotes. Therefore, infection relapse does not arise from a small number of intact large nests. Rather, persisters are either survivors of intracellular populations where co-located parasites have been killed, or amastigotes in single/low-level infected cells exist in a state where they are less susceptible to benznidazole. To better assess the nature of parasite persisters, we exposed infected mammalian cell monolayers to a benznidazole regimen that reduces the intracellular amastigote population to <1% of the pre-treatment level. Of host cells that remained infected, as with the situation in vivo, the vast majority contained only one or two surviving intracellular amastigotes. Analysis, based on non-incorporation of the thymidine analogue EdU, revealed these surviving parasites to be in a transient non-replicative state. Furthermore, treatment with benznidazole led to widespread parasite DNA damage. When the small number of parasites which survive in mice after non-curative treatment were assessed using EdU labelling, this revealed that these persisters were also initially non-replicative. A possible explanation could be that triggering of the T. cruzi DNA damage response pathway by the activity of benznidazole metabolites results in exit from the cell cycle as parasites attempt DNA repair, and that metabolic changes associated with non-proliferation act to reduce drug susceptibility. Alternatively, a small percentage of the parasite population may pre-exist in this non-replicative state prior to treatment

    Imaging the development of chronic Chagas disease after oral transmission.

    Get PDF
    Chagas disease is a zoonosis caused by the protozoan parasite Trypanosoma cruzi. Transmission cycles are maintained by haematophagous triatomine bug vectors that carry infective T. cruzi in their faeces. Most human infections are acquired by contamination of mucosal membranes with triatomine faeces after being bitten, however, T. cruzi can be transmitted by several other routes. Oral transmission is an increasingly important aspect of Chagas disease epidemiology, typically involving food or drink products contaminated with triatomines. This has recently caused numerous outbreaks and been linked to unusually severe acute infections. The long-term impact of oral transmission on infection dynamics and disease pathogenesis is unclear. We used highly sensitive bioluminescence imaging and quantitative histopathology to study orally transmitted T. cruzi infections in mice. Both metacyclic and bloodform trypomastigotes were infectious via the oral cavity, but only metacyclics led to established infections by intra-gastric gavage. Mice displayed only mild acute symptoms but later developed significantly increased myocardial collagen content (p = 0.017), indicative of fibrosis. Gastrointestinal tissues and skin were the principal chronic infection reservoirs. Chronic phase parasite load profiles, tissue distribution and myocardial fibrosis severity were comparable to needle-injected controls. Thus, the oral route neither exacerbates nor ameliorates experimental Chagas disease

    Bioluminescent:Fluorescent Trypanosoma cruzi Reporter Strains as Tools for Exploring Chagas Disease Pathogenesis and Drug Activity.

    Get PDF
    Chagas disease results from infection with the trypanosomatid parasite Trypanosoma cruzi. Progress in developing new drugs has been hampered by the long term and complex nature of the condition and by our limited understanding of parasite biology. Technical difficulties in assessing the parasite burden during the chronic stage of infection have also proven to be a particular challenge. In this context, the development of noninvasive, highly sensitive bioluminescence imaging procedures based on parasites that express a red-shifted luciferase has greatly enhanced our ability to monitor infections in experimental models. Applications of this methodology have led to new insights into tissue tropism and infection dynamics and have been a major driver in drug development. The system has been further modified by the generation of parasite reporter lines that express bioluminescent:fluorescent fusion proteins, an advancement that has allowed chronic infections in mice to be examined at a cellular level. By exploiting bioluminescence, to identify the rare sites of tissue infection, and fluorescence to detect T. cruzi at the level of individual host cells in histological sections, it has been possible to investigate the replication and differentiation status of parasites in vivo and to examine the cellular environment of infection foci. In combination, these data provide a framework for the detailed dissection of disease pathogenesis and drug activity
    • …
    corecore