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Abstract

Background

The long term and complex nature of Chagas disease in humans has restricted studies on

vaccine feasibility. Animal models also have limitations due to technical difficulties in moni-

toring the extremely low parasite burden that is characteristic of chronic stage infections.

Advances in imaging technology offer alternative approaches that circumvent these prob-

lems. Here, we describe the use of highly sensitive whole body in vivo imaging to assess the

efficacy of recombinant viral vector vaccines and benznidazole-cured infections to protect

mice from challenge with Trypanosoma cruzi.

Methodology/Principal findings

Mice were infected with T. cruzi strains modified to express a red-shifted luciferase reporter.

Using bioluminescence imaging, we assessed the degree of immunity to re-infection con-

ferred after benznidazole-cure. Those infected for 14 days or more, prior to the onset of

benznidazole treatment, were highly protected from challenge with both homologous and

heterologous strains. There was a >99% reduction in parasite burden, with parasites fre-

quently undetectable after homologous challenge. This level of protection was considerably

greater than that achieved with recombinant vaccines. It was also independent of the route

of infection or size of the challenge inoculum, and was long-lasting, with no significant dimi-

nution in immunity after almost a year. When the primary infection was benznidazole-treated

after 4 days (before completion of the first cycle of intracellular infection), the degree of pro-

tection was much reduced, an outcome associated with a minimal T. cruzi-specific IFN-γ+ T

cell response.

Conclusions/Significance

Our findings suggest that a protective Chagas disease vaccine must have the ability to elimi-

nate parasites before they reach organs/tissues, such as the GI tract, where once estab-

lished, they become largely refractory to the induced immune response.
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Author summary

Chagas disease, which is caused by the protozoan parasite Trypanosoma cruzi, is a major

public health problem throughout Latin America. Attempts to develop a vaccine have

been hampered by technical difficulties in monitoring the extremely low parasite burden

during the life-long chronic stage of infection. To circumvent these issues, we used highly

sensitive bioluminescence imaging to assess the ability of recombinant viral vector vac-

cines and drug-cured infections to confer protection against experimental challenge in

mice. We observed that drug-cured infections were much more effective than subunit vac-

cines. Efficacy was independent of the route of infection or size of the challenge inoculum,

and was undiminished after almost a year. In addition, drug-cured infections conferred a

high level of cross-strain protection. The highly sensitive imaging procedures enabled us

to visualise parasite distribution in mice where full protection was not achieved. This sug-

gested that to confer protection, vaccines must prevent the infection of organs/tissues that

act as parasite reservoirs during the chronic stage. Once established at these sites, parasites

become largely refractory to vaccine-induced elimination.

Introduction

Chagas disease is caused by the insect-transmitted protozoan Trypanosoma cruzi and is the

most important parasitic infection in the Americas. More than 5 million people are infected

with this obligate intracellular parasite [1], resulting in a financial burden estimated at $7 bil-

lion annually [2]. In humans, the disease is characterised by an acute stage that occurs 2–8

weeks post-infection, during which bloodstream parasites are often detectable. Symptoms dur-

ing this period are normally mild, although lethal outcomes can occur in 5% of diagnosed

cases. The parasite numbers are then controlled by a vigorous adaptive immune response.

However, sterile immunity is not achieved and infected individuals transition to a chronic

stage, which in most cases, appears to be life-long [3]. Around 30–40% of those infected even-

tually develop chronic disease pathology, a process that can take decades to become symptom-

atic. Cardiomyopathy is the most common clinical manifestation [4, 5], although 10–15% of

people can develop digestive tract megasyndromes, sometimes in addition to cardiac disease.

Attempts to control Chagas disease have been challenging. For example, although public

health measures have been successful in reducing disease transmission in several regions of

South America, there is a vast zoonotic reservoir that complicates disease eradication by this

route [6–8]. The only drugs currently available to treat the infection, the nitroheterocycles

benznidazole and nifurtimox, have limited efficacy and cause toxic side effects that can impact

on patient compliance [9, 10]. There have been no new treatments for almost 50 years, but

progress in discovering new chemotherapeutic agents is now being accelerated by a range of

drug development consortia encompassing both the academic and commercial sectors [11].

For many years, vaccine development against Chagas disease has been inhibited by concerns

that autoimmunity could play a role in disease pathogenesis [12, 13]. Although not excluded as

a contributory factor, the current consensus is that the risk has been overstated, and that the

continued presence of the parasite is required to drive disease pathology [14, 15].

The host response to T. cruzi infection involves a complex combination of both innate and

adaptive immune mechanisms [16, 17]. The innate system is key to controlling parasite prolif-

eration and dissemination during the initial stages of infection [18], with important roles for

both Toll-like receptor (TLR)-mediated inflammatory responses [19] and TLR-independent
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processes [20, 21]. As the acute phase progresses, the development of an antigen-specific

immune response, in which CD8+ IFN-γ+ T cells are the key effectors [16, 22], is the critical

step in controlling the infection. In both humans and mice, the major targets of this cellular

response are a small set of immunodominant epitopes within specific members of the trans-

sialidase super-family of surface antigens [23]. The observation that the pattern of this recogni-

tion displays strain variation has been interpreted as indicative that immune evasion could be

operating at a population level. The adaptive response reduces the parasite burden by>99%,

with the infection becoming highly focal, and in BALB/c mice at least, confined predominantly

to the large intestine, stomach, and to a lesser extent, the gut mesentery tissue and sites in the

skin [24, 25]. The reason why the immune system is not able to eradicate the infection is unre-

solved. It does not appear to involve exhaustion of the CD8+ IFN-γ+ T cell response, which

continues to suppress, but not eliminate, the parasite burden throughout the long chronic

stage [26]. These findings have questioned the feasibility of developing an effective anti-T.

cruzi vaccine.

Experimental vaccination of animal models against T. cruzi infection has a long history

[27], although there have been few instances in which unequivocal sterile protection has been

reported. Approaches have included the use of attenuated parasites [28, 29], immunisation

with cell fractions [30], purified or recombinant proteins [31, 32] and the use of DNA vaccines.

In the latter case, viral backbones based on vaccinia [33], yellow fever [34] and adenovirus [35]

have been used to facilitate expression of a range of parasite antigens such as trans-sialidase,

Tc24, and the amastigote surface protein-2 (ASP-2) (also a member of the trans-sialidase

super-family). Reported outcomes include protection from lethal infection, reduction in the

acute stage parasite burden, induction of a favourable cytokine profile, and reduction in dis-

ease pathology. However, detailed analysis of vaccine efficacy has been limited by an inability

to accurately monitor parasite levels during the chronic stage and technical difficulties in

assessing the effect of the immune response on tissue distribution following challenge

infections.

Recently, in vivo imaging approaches have been exploited to provide new insights into

infection dynamics during experimental chronic Chagas disease [24, 25, 36]. These studies

have revealed the pantropic nature of acute stage infections, and shown that during the chronic

stage, the adaptive immune response restricts parasites to small infection foci, predominantly

within the GI tract. Other tissues and organs, including the heart and skeletal muscle, are

infected sporadically, the extent of which is influenced by host:parasite genetics and immune

status. Additional factors such as nutrition, environmental stimuli, age and co-infections could

also play a role in this complex chronic infection profile [37]. The survival of the small parasite

foci within apparently tolerant sites is crucial for long-term infection, although the immuno-

logical context of these reservoirs is unknown. Another contributor to the long-term nature of

T. cruzi infections could be the phenomenon of parasite dormancy; individual intracellular

amastigotes can enter an apparently quiescent state in which they cease to replicate and exhibit

reduced drug sensitivity [38]. Neither the mechanisms involved, nor the potential implications

for immune evasion have yet been established.

Highly sensitive bioluminescence imaging involves the use of T. cruzi strains that have been

modified to express a red-shifted luciferase reporter [39]. The system allows the real-time

monitoring of parasite burden in experimental mice during chronic stage infections. There is a

robust correlation between parasite numbers and whole animal bioluminescence, with a limit

of detection close to 100 parasites [24]. Here, we describe the use of this imaging technology to

assess the extent of protection in benznidazole-cured mice following re-challenge with homol-

ogous and heterologous strains. Our findings have important implications for vaccine

strategies.
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Materials and methods

Generation of recombinant ASP-2/TS vaccines

The fusion gene encoding the ASP-2 and TS peptides (Fig 1A) was generated by linking

sequences corresponding to the mouse Ig kappa chain signal peptide, ASP-2 amino acids

1–694 (GenBank accession no. U77951) and TS amino acids 1–624 (GenBank accession no.

L38457). The furin 2A splice site linker was inserted between the trypanosome sequences to

ensure the subsequent generation of two separate peptides from a single open reading frame

[40]. The ASP-2/TS fusion gene was cloned into the ChAdOx1 [41] and MVA [42, 43] viral-

vectored vaccine platforms, and confirmed by sequencing prior to use in protection studies.

Assessment of recombinant vaccine immunogenicity

Vaccines were prepared in PBS and administered intramuscularly into the left and right quad-

riceps of mice. The ChAdOx1 vaccine was administered at 1x108 infectious units per dose.

With MVA:ASP-2/TS, each dose was equivalent to 1x106 plaque forming units. ELISpots were

carried out using either peripheral blood mononuclear cells (PBMCs) or splenocytes [44].

Briefly, MAIP ELISpot plates (Millipore) were coated at 4˚C overnight with anti-mouse IFN-γ
mAb AN-18 (Mabtech), at 250 ng per well, and then blocked for 1 h with complete DMEM

medium (plus 10% foetal calf serum). Whole blood was sampled by venesection of the tail vein

and PBMCs were isolated using histopaque 1083 (Sigma), and plated at 5x105 cells per well in

complete DMEM medium as above, with 20-mer specific peptides overlapping by 10 amino

acids (10 μg ml-1) (Pepscan Presto). Splenocytes from naïve mice were plated at 2.5x105 per

well. After 16 h incubation, cells were discarded and plates washed with PBS. 50 μl of biotiny-

lated anti-mouse IFN-γ mAb RA-6A2 (1:1000 in PBS) was then added to each well and incu-

bated for 2 h. After another washing step, streptavidin peroxidase (Sigma) was added and

incubated at 37˚C for 1 h. The plates were washed and developed with TMB substrate solution

(Mabtech). When spots were visible, the reaction was stopped by washing the plate with water.

Spots were analysed using an ELISpot reader, and the number of spot-forming cells/106

PBMCs producing IFN-γ was calculated.

Fig 1. Immunogenicity of the recombinant ASP-2/TS vaccine. (A) Open reading frame encoding ASP-2 and TS peptides, with the

mouse Ig kappa chain signal peptide and furin 2A splice site linker indicated. (B) Prime-boost vaccination strategy. BALB/c mice

(n = 5) were inoculated one week apart with ChAdOx1 (priming) and then MVA (boosting) recombinant vaccines containing the

ASP-2/TS fusion gene. Control mice received vaccinations with the same viral vectors engineered to express dengue protein NS-1

(n = 3). (C) ELISpot analysis. Splenocytes were plated onto antibody coated ELISpot plates and stimulated for 16 h with a peptide

pool covering the entire ASP-2 and TS sequences (Materials and Methods). Data are presented as ex vivo IFN-γ spot forming cells

(SFCs) per 106 splenocytes.

https://doi.org/10.1371/journal.pntd.0007717.g001
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Murine infections and bioluminescence imaging

Animal work was performed under UK Home Office project licence (PPL 70/8207) and

approved by the LSHTM Animal Welfare and Ethical Review Board. Procedures were in

accordance with the UK Animals (Scientific Procedures) Act 1986 (ASPA). BALB/c mice were

purchased from Charles River (UK), and CB17 SCID mice were bred in-house. Animals were

maintained under specific pathogen-free conditions in individually ventilated cages. They

experienced a 12 h light/dark cycle, with access to food and water ad libitum. SCID mice were

infected with 1x104 bioluminescent bloodstream trypomastigotes (BTs) in 0.2 ml PBS via

intraperitoneal (i.p.) injection [24, 25, 36]. BALB/c female mice, aged 8–10 weeks, were

infected i.p with 1x103 BTs derived from SCID mouse blood. At experimental end-points,

mice were sacrificed by exsanguination under terminal anaesthesia.

For in vivo imaging, mice were injected with 150 mg kg-1 d-luciferin i.p., then anaesthetized

using 2.5% (v/v) gaseous isoflurane. They were placed in an IVIS Lumina II system (Caliper

Life Science) 5–10 min after d-luciferin administration and images acquired using Living-

Image 4.3. Exposure times varied from 30 s to 5 min, depending on signal intensity. After

imaging, mice were revived and returned to cages. For ex vivo imaging, mice were injected

with d-luciferin, and sacrificed by exsanguination under terminal anaesthesia 5 min later.

They were then perfused via the heart with 10 ml 0.3 mg ml-1 d-luciferin in PBS. Organs and

tissues were removed and transferred to a Petri dish in a standardized arrangement, soaked in

0.3 mg ml-1 d-luciferin in PBS, and imaged using maximum detection settings (5 min expo-

sure, large binning). The remaining animal parts and carcass were checked for residual biolu-

minescent foci, also using maximum detection settings [24, 25]. To estimate parasite burden

in live mice, regions of interest were drawn using LivingImage v.4.3 to quantify biolumines-

cence as total flux (photons/second), summed from dorsal and ventral images. The detection

threshold for in vivo imaging was determined using uninfected mice.

Drug treatment and immunosuppression

Benznidazole was synthesized by Epichem Pty Ltd., Australia, and prepared at 10 mg ml−1 in

an aqueous suspension vehicle containing 5% (v/v) DMSO, 0.5% (w/v) hydroxypropyl methyl-

cellulose, 0.5% (v/v) benzyl alcohol and 0.4% (v/v) Tween 80. It was administered by oral

gavage. To detect any residual infection following treatment, mice were immunosuppressed

with cyclophosphamide monohydrate (Sigma) in D-PBS (200 mg kg−1), administered by i.p.

injection every 4 days, for 3 doses. Two weeks after the end of immunosuppression, mice that

were bioluminescence negative by both in vivo and ex vivo imaging were designated as cured.

Results

Monitoring ASP-2/TS vaccine efficacy using highly sensitive

bioluminescence imaging

The T. cruzi amastigote surface protein 2 (ASP-2) and trypomastigote cell surface protein

trans-sialidase (TS) have shown promise as vaccine candidates against T. cruzi infections [45–

47]. To further assess their efficacy, we used two replication-deficient recombinant vaccine

platforms, a chimpanzee adenovirus (ChAdOx1) and a Modified Vaccinia Ankara virus

(MVA), expressing ASP-2 and TS peptides from a single open reading frame (Fig 1A) (Materi-

als and Methods) [40]. We used a homologous prime-boost vaccination strategy in which

BALB/c mice received intramuscular injections administered one week apart (Fig 1B) and

confirmed immunogenicity of the vaccine delivery system using an ex vivo IFN-γ+ ELISpot.

Three weeks after receiving either a prime only, or a prime-booster vaccination, splenocytes
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were plated on antibody coated ELISpot plates. When these cells were then stimulated with a

peptide pool representing the entire ASP-2/TS sequence, there was a pronounced increase in

the number of peptide specific IFN-γ+ splenocytes, particularly in those mice that had received

the booster (Fig 1C).

To test protective efficacy, mice were vaccinated using the homologous prime-boost strat-

egy outlined above. Three weeks after the MVA booster, they were challenged by i.p. injection

with 103 bioluminescent T. cruzi blood trypomastigotes (strain CL Brener) (Fig 2A). The

resulting infection was monitored by in vivo imaging [36] (Materials and Methods). In BALB/

c mice, parasites rapidly disseminate and proliferate, with the infection reaching a peak after

approximately 2 weeks. Thereafter, a vigorous adaptive immune response reduces the parasite

burden by >2 orders of magnitude, and the infection transitions to the life-long chronic stage

[24]. No differences were observed in the bioluminescence-inferred parasite burden between

vaccinated and control mice at the earliest time-point assessed (day 7, post-infection) (Fig 2B

and 2C). However, by day 15, the peak of the acute stage, the ASP-2/TS vaccinated mice dis-

played a 77% reduction in the bioluminescence-inferred parasite burden. This protective effect

was maintained until day 21. By day 28, against a background of immune-mediated reduction

in the parasite burden, there were no significant differences between the vaccinated and con-

trol groups. From that point onwards, the parasite burden remained similar between the

groups (Fig 2B and 2C). Following termination of the experiment (day 95), ex vivo imaging of

internal organs and tissues revealed that the profile of infection in the vaccinated cohort was

typical of the chronic stage. The colon and/or stomach were the major tissues persistently par-

asitized, with infections in other organs being sporadic (S1 Fig). There were no apparent dif-

ferences in the tissue-specific parasite burden between vaccinated and control mice (Fig 2D).

Therefore, although vaccination with the ASP-2/TS constructs can reduce parasite burden

during the acute stage, bioluminescence imaging has revealed that it does not impact on the

long-term burden of chronic infections.

Drug-cured T. cruzi infection confers significant protection against

challenge with a homologous strain

To place the recombinant vaccine results into context, we sought to establish the extent to

which drug-cured infections could enhance the capacity of the murine immune response to

protect against challenge. We hypothesised that this would induce a high level of protection

against which to compare the efficacy of vaccine candidates. BALB/c mice were first inoculated

i.p. with bioluminescent parasites (CL Brener strain) (n = 12). At three different points post-

infection (4, 14 and 36 days) (Fig 3A), we initiated treatment with benznidazole (100 mg kg-1),

once daily, for 20 consecutive days. This dosing regimen was shown to be curative (S2 Fig), in

line with previous results [48, 49]. The plasma concentration of benznidazole falls below the in
vitro EC50 value in approximately 12 h [49]. 21 days after the cessation of treatment, the cured

mice were re-infected i.p. and monitored regularly by in vivo imaging (Fig 3B and 3C). 70 days

after challenge, mice found to be bioluminescence-negative were immunosuppressed to facili-

tate the outgrowth and dissemination of any residual parasites, then assessed further by ex vivo
imaging two weeks later (Fig 3D) (Materials and Methods). We have previously shown that

this methodology is considerably more reliable than PCR-based approaches at detecting sur-

viving parasites [48].

When curative treatment was initiated at 36 days post-infection, none of the mice exhibited

a distinct acute stage infection peak following challenge (Fig 3B and 3C). There was>99%

reduction in the inferred parasite burden in all cases, compared to primary infection control

mice. At the experimental end-point, in 6 out of 12 mice, parasites were undetectable (Table 1,

PLOS NEGLECTED TROPICAL DISEASES Monitoring immunity against T. cruzi infections by in vivo imaging

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007717 April 17, 2020 6 / 20

https://doi.org/10.1371/journal.pntd.0007717


Fig 3D, S3 Fig). In cases where the primary infection was allowed to proceed for 14 days prior

to the initiation of curative benznidazole treatment, the infection profile following challenge

was very similar to the cohort where treatment was initiated 36 days post-infection. However,

a greater number of foci were detectable during the period corresponding to the acute stage of

primary infections (Fig 3B), with full protection achieved in 3 out of 12 mice. In contrast to

both of the above, when curative treatment began 4 days after the primary infection, there was

a clear acute stage peak in the bioluminescence profile following challenge (Fig 3C). The

kinetic profile mirrored that in control infected mice, although the maximum parasite burden

was 85% lower, and only a single mouse was judged to be protected (Table 1, S3 Fig). There-

fore, although the immune response induced by a short course infection is able to impact on

the burden of re-infection, the effect is significantly limited compared with what is achievable

when the primary infection is allowed to progress fully into the acute stage, prior to treatment.

To assess whether this protective effect was dependent on the route of inoculation, we

repeated the 36 days challenge experiment using the subcutaneous (s.c.) route. T. cruzi

Fig 2. Assessing the efficacy of the ASP-2/TS vaccine to protect mice against T. cruzi infection. (A) Timeline of vaccination experiment. (B) Assessment

of efficacy. Vaccinated (n = 5) and control BALB/c mice (n = 3) were infected i.p. with 103 bioluminescent T. cruzi trypomastigotes and monitored by in
vivo imaging. Representative ventral images (from a single mouse in each case) are shown at sequential time points post-infection. All images use the same

log10-scale heat-map with minimum and maximum radiance values indicated. (C) Quantification of whole animal bioluminescence (ventral and dorsal) of

vaccinated and control cohorts (mean ± SD). Dashed line indicates background bioluminescence; (��) p<0.01, (�) p<0.05. (D) Ex vivo bioluminescence

imaging. Left-hand image; arrangement of organs and tissues. Insets, representative images of organs from control and vaccinated mice, 95 days post-

infection (see also S1 Fig).

https://doi.org/10.1371/journal.pntd.0007717.g002
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transmission normally occurs when parasite-infected faeces from the insect vector are rubbed

into the wound produced by blood feeding; therefore, s.c. inoculation probably reflects more

closely how the majority of human infections occur. The mice were inoculated s.c. with 103

bloodstream trypomastigotes for both the primary and challenge infections, but the protocols

and treatment timelines were otherwise identical to those used previously (Fig 3A, 36 day

infection). In control mice, the bioluminescence profile of s.c. infections, and the resulting

organ-specific tropism during the chronic stage was similar to that in i.p. infections (Fig 4A,

4B and 4C), as shown previously [24, 25]. When the challenge cohort was assessed by in vivo
imaging (Fig 4A), none of the mice displayed an acute stage peak, and bioluminescence was at,

or close to background levels. At the experimental end-point, all of the mice were immunosup-

pressed and then subjected to post-mortem ex vivo organ imaging to test for foci of infection

below the limit of in vivo detection. 4 out of 5 were found to be bioluminescence negative in all

analyses and were designated as protected (Table 1).

Fig 3. Drug-cured infections confer significant protection against challenge with a homologous T. cruzi strain. (A) Outline of strategy. BALB/c mice were

infected i.p. with 103 bioluminescent trypomastigotes (CL Brener strain) and subjected to curative benznidazole treatment initiated at various times post-

infection. 21 days after the end of treatment, they were re-infected i.p. and monitored for a further 70 days. Bioluminescence-negative mice were then

immunosuppressed using cyclophosphamide (Materials and Methods) and assessed by ex vivo imaging two weeks later. Results were derived from 2

independent experiments, each involving 6 mice per cohort. (B) Representative ventral images of benznidazole-cured mice following re-infection. The

number of days at which drug treatment was initiated, following the primary infection, is indicated (left). Controls are naive mice that were infected at the

same point as the re-infected experimental cohorts, and serve to illustrate the normal profile of infection in the absence of any form of conferred immunity.

All images use the same log10-scale heat-map with minimum and maximum radiance values indicated. (C) Total body bioluminescence (sum of ventral and

dorsal images) of drug-cured mice following re-infection (n = 12) (means ± SD) derived by in vivo imaging. The length of the primary infection is indicated

(inset). (D) Representative ex vivo bioluminescence images. Upper inset, organs from control mouse 70 days post-infection. Central inset, organs from a

mouse that was re-infected following curative treatment initiated on day 36 of the primary infection. On day 70 of the challenge infection,

immunosuppressive treatment was initiated and the organs then harvested. In this instance, a residual infection was identified. Lower inset, organs from a

mouse treated as above, which was protected against challenge.

https://doi.org/10.1371/journal.pntd.0007717.g003
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It has been reported that the capacity of a cured mouse to resist re-infection is dependent

on the size of the challenge inoculum [50]. To investigate this using the in vivo imaging system,

mice where curative treatment was initiated 36 days post infection were challenged i.p. with

6x104 CL Brener trypomastigotes, 60 times the number used previously. The outcome was

similar. None of the mice displayed an acute stage parasite burden profile, and only a single

mouse (out of 6) was designated non-protected (Fig 4D, 4E and 4F). Therefore, the level of

protection conferred by a cured infection is similar when a higher challenge inoculum is used.

We next sought to assess the extent of the immunological memory conferred by a primary

drug-cured infection. BALB/c mice were infected i.p. with CL Brener trypomastigotes, and

curative benznidazole treatment was initiated after 36 days. On this occasion, however, the

mice were not re-infected until 338 days after the cessation of treatment. Following homolo-

gous challenge, the level of protection was comparable to that achieved in previous experi-

ments when mice were re-infected 3 weeks after the last dose of benznidazole. They were able

to prevent the onset of parasite proliferation during the acute stage, and parasites were non-

detectable in 4 out of 6 mice (Fig 4G, 4H and 4I).

Assessing circulating IFN-γ+ T cells in mice after primary infection and

challenge

We sought to determine if the duration of the primary infection, prior to commencement of

curative drug treatment, impacted on the extent of the T. cruzi-specific immune response to

challenge with homologous parasites. Blood was collected, 2 days prior to re-infection and at

regular intervals thereafter, from mice that had been infected for 4, 14 and 36 days (Fig 5A).

PBMCs were isolated, re-stimulated with an ASP-2 and TS peptide pool, and the IFN-γ+ cell

frequencies measured by ELISpot (Materials and Methods). As expected for mice infected

with T. cruzi [51], the control group receiving their first parasite exposure showed a delayed

peptide-specific response, with the frequency of IFN-γ+ cells on day 10 not significantly differ-

ent to pre-infection levels. There were substantial increases by days 25 and 40 (Fig 5B), co-inci-

dent with the period when the parasite burden had been controlled and was undergoing major

reduction (Fig 3B and 3C).

Table 1. Summary of protection data.

Preliminary infection

strain

Challenge

strain

Route of

infection

Challenge

dose

Length of primary

infection1
Period between cure and

challenge

Mean parasite

reduction2
Parasites non-

detectable

CL-Brener CL-Brener i.p. 1 x 103 36 days 21 days >99% 6/123

CL-Brener CL-Brener i.p. 1 x 103 14 days 21 days >99% 3/123

CL-Brener CL-Brener i.p. 1 x 103 4 days 21 days 85% 1/123

CL-Brener CL-Brener s.c. 1 x 103 36 days 21 days >99% 4/5

CL-Brener CL-Brener i.p. 6 x 104 36 days 21 days >99% 5/6

CL-Brener CL-Brener i.p. 1 x 103 36 days 338 days >99% 4/6

JR JR i.p. 1 x 103 36 days 20 days >99% 1/6

JR CL-Brener i.p. 1 x 103 36 days 20 days >99% 0/6

CL-Brener JR i.p. 1 x 103 36 days 20 days >99% 0/6

1Period stretching from initial infection to the commencement of drug treatment.
2Reduction of parasite burden was inferred from total body bioluminescence at the peak of the acute stage. When mice inoculated i.p. with bioluminescent T. cruzi were

assessed by in vivo imaging, there was a linear relationship between the inoculum size and the whole animal bioluminescence for 1000 parasites and above (R2>0.99)

[24].
3Data derived from two independent experiments, each n = 6.

https://doi.org/10.1371/journal.pntd.0007717.t001
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With benznidazole-cured mice, the pre-challenge levels of circulating T. cruzi peptide-spe-

cific IFN-γ+ T cells varied, depending on the duration of the preliminary infection (Fig 5B).

Initially, mice that had been infected for 36 days prior to cure displayed higher levels than the

control cohort (day -2). However, these levels did not increase significantly following re-infec-

tion, although in the case of the day 14 group, there was a slight trend in this direction. In the

control group, the robust adaptive response, which controlled the infection, was associated

with levels of circulating IFN-γ+ T cells that were significantly higher than in any of the benzni-

dazole-cured mice by 40 days post-challenge (Fig 5B). Mice that had been infected for only 4

days prior to drug-cure, displayed IFN-γ+ T cell kinetics that were initially more similar to

naïve mice receiving their preliminary infection, with very low levels before and 10 days post-

challenge, followed by a major increase by day 25. The levels decreased thereafter, in contrast

to the control group, where they continued at higher levels until day 40.

We also examined circulating peptide-specific IFN-γ+ T cells in mice that had been re-

infected 338 days after drug cure (Fig 6A). Prior to re-challenge, the levels were similar to

Fig 4. Protection conferred by a benznidazole-cured infection is not dependent on the route of infection, size of the challenge inoculum or the time-period

until re-infection. (A) BALB/c mice, infected by the subcutaneous (s.c.) route with 103 bioluminescent trypomastigotes (CL Brener strain), were subjected to

curative benznidazole treatment 36 days post-infection. 21 days after the end of treatment, they were re-infected (s.c.). Control mice were also infected by the s.c.

route. (B) Total body bioluminescence of drug-cured mice following s.c. re-infection (means ± SD). (C) Ex vivo bioluminescence imaging of organs and carcass

from a control and the re-infected mouse that was found to be non-protected after immunosuppression (Materials and Methods). (D) BALB/c mice infected i.p.

with CL Brener trypomastigotes, were subjected to benznidazole treatment 36 days post-infection. 21 days after the end of treatment, they were re-infected (i.p.)

with 6x104 trypomastigotes. (E) Total body bioluminescence of drug-cured mice following re-infection. (F) Ex vivo bioluminescence imaging of organs and

carcass of a control and the re-infected mouse that was found to be non-protected after immunosuppression. (G) As above, BALB/c mice were infected i.p. and

subjected to curative benznidazole treatment. 338 days after the end of treatment, they were re-infected (i.p.) with 103 trypomastigotes. (H) Total body

bioluminescence of drug-cured mice following re-infection. The increased mean bioluminescence of the re-infected mice towards the end of the monitoring

period was due to an intense bioluminescence focus in one of the two non-protected animals. (I) Ex vivo bioluminescence imaging of organs and carcass of a

control and a re-infected mouse that was found to be non-protected after immunosuppression. In all cases, the original cohort size was n = 6. During the course

of the s.c. infection experiment (A-C), one mouse failed to recover from anaesthesia, and was excluded from the analysis.

https://doi.org/10.1371/journal.pntd.0007717.g004
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those in non-infected control mice. However, by 10 days post-challenge, there had been a

5-fold increase, in contrast to the delayed peptide-specific response typical of a T. cruzi infec-

tion (Fig 6B). This difference was not maintained, and on days 25 and 40 after challenge, the

level of IFN-γ+ T cells was not significantly different from control mice.

The capacity of drug-cured infections to confer a cross-strain protective

response

T. cruzi displays significant genetic diversity, with the natural population subdivided into 6 lin-

eages known as discrete typing units (DTUs), each of which has the ability to infect humans

[52]. We therefore investigated if the capacity to confer homologous protection is a general

feature of T. cruzi infections by performing an analogous experiment using JR strain parasites

from the genetically distant TcI lineage. In BALB/c mice, infections with this strain are slightly

slower to reach the peak of the acute stage, but the bioluminescence profile is otherwise similar

to that of the CL Brener strain (DTU VI lineage) [25]. Mice were benznidazole-treated 36 days

into a JR infection, and re-infected with the same strain 20 days after the end of treatment (Fig

7A). As before, we observed that the cured infection conferred significant protection. None of

the mice exhibited a distinct acute stage peak, with the majority remaining close to biolumi-

nescence background levels (Fig 7B and 7C). However, only a single mouse (out of 6) exhibited

full protection as assessed by ex vivo imaging following immunosuppression (Materials and

Methods) (Fig 7D).

Fig 5. The length of the primary infection affects the level of circulating murine IFN-γ+ T cells after challenge. (A)

Timeline of experiment. Infected BALB/c mice were subjected to curative benznidazole treatment initiated 36, 14 or 4

days post-infection (as in Fig 3). 21 days after the end of treatment, they were re-infected (i.p., 103 CL Brener

trypomastigotes) and blood was collected by venesection on the days indicated. (B) ELISpot analysis. PBMCs were

isolated from re-infected mice at pre and post re-infection, as indicated. IFN-γ+ PBMCs were quantified after

overnight stimulation with a 20-mer peptide pool representing the ASP-2 and TS proteins, as in Fig 1. Data are

presented as ex vivo IFN-γ SFCs per 106 PBMCs. (���) p<0.001; (�) p<0.05.

https://doi.org/10.1371/journal.pntd.0007717.g005
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To assess the scope for vaccine-induced species-wide immunity, we next investigated the

effectiveness of protection conferred against a heterologous challenge using the strains CL

Brener (TcVI) and JR (TcI). Following the strategy outlined above, BALB/c mice were infected

i.p. with 103 bloodstream CL Brener or JR trypomastigotes, benznidazole-treated, and then

challenged with the heterologous strain 20 days after the end of the curative therapy. In both

experiments, we observed a strong protective response (>99%) (Fig 7E–7J), with no distinct

acute stage peak and a reduced number of bioluminescent foci in the period corresponding to

the transition to the chronic stage. However, in both cases, all mice exposed to cross-strain

challenge displayed small but clear parasite foci following re-infection. None were biolumines-

cence-negative when examined by ex vivo imaging, with each displaying the type of GI tract

infections characteristic of the chronic stage (Fig 7G and 7J). Therefore, although infection

with a heterologous strain can have a major impact on the subsequent parasite burden, it did

not lead to parasite elimination in any of the mice examined.

Discussion

Although experimental T. cruzi vaccines have been widely shown to reduce the burden of

infection in animal models [27–35], there is little unambiguous evidence for sterile protection.

Despite this, there have been an increasing number of reports that vaccination could have ther-

apeutic benefits in terms of decreased cardiac pathology [33, 53–55]. Therefore, the question

as to whether the development of a Chagas disease vaccine might be a practical option for

reducing the public health impact of this infection remains unanswered. Detailed assessment

has been limited by difficulties in detecting the intermittent low-level parasitemia of chronic

stage infections, and in identifying the tissue/organ location of persistent parasites. Here, we

demonstrate that highly sensitive bioluminescent imaging can negate some of these issues, and

provide novel insights into vaccine efficacy.

Fig 6. Effect of delaying re-infection on the level of circulating murine IFN-γ+ T cells after challenge. (A) Timeline

of experiment. Infected BALB/c mice were cured with benznidazole treatment, which was initiated 36 days post-

infection, as in Fig 5. They were re-infected 338 days later, and blood samples collected on the days indicated. (B)

PBMCs were isolated from re-infected mice at various time points pre and post re-infection. IFN-γ+ PBMCs were

quantified after overnight stimulation with the 20-mer ASP-2/TS peptide pool. (�) p = 0.024.

https://doi.org/10.1371/journal.pntd.0007717.g006
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Initially, we tested the protective properties of two viral vectors (MVA and ChAdOx1) that

had been modified to express an ASP-2/TS fusion gene (Fig 1). The reduction in peak parasite

burden (77%, Fig 2C) was in a range similar to that reported for other recombinant T. cruzi
vaccines [56–58, as examples]. Interestingly, vaccination had no impact on the parasite burden

once the infection had begun transition to the chronic phase, suggesting that if parasites can

survive until this stage of the disease, they are less susceptible to clearance by vaccine-induced

immunity. This has not been reported previously. At the experimental end-point, biolumines-

cence imaging allowed us to demonstrate that the remaining parasites were restricted predom-

inantly to the GI tract, with other organs/tissues infected only sporadically (Fig 2D, S1 Fig). In

BALB/c and other mice, the colon and/or stomach serve as a permissive niche, enabling para-

sites to persist in an otherwise hostile immune environment [24, 25, 37], although the mecha-

nism(s) for this have yet to be elucidated. To determine if this might limit the utility of a

Chagas disease vaccine, we therefore investigated the protective effect of benznidazole-cured

infections, on the basis that these should provide optimal levels of immunity. Curative treat-

ment has been associated with the development of a stable anti-T. cruzi CD8+ T cell population

[22].

Fig 7. Protection against challenge with a heterologous T. cruzi strain. (A) Outline strategy. BALB/c mice were infected i.p. with bioluminescent

trypomastigotes (CL Brener or JR strains) and subjected to curative benznidazole treatment initiated 36 days post-infection. 20 days after the end of treatment,

they were re-infected as indicated below and monitored for a further 70 days. Bioluminescence-negative mice were then immunosuppressed and assessed by ex
vivo imaging. (B) Ventral images of a representative drug-cured JR infected mouse (n = 6) following re-infection with the homologous JR strain. All images use

the same log10-scale heat-map shown in Fig 2. (C) Total body bioluminescence (sum of ventral and dorsal images) of drug-cured JR infected mice re-infected

with the JR strain (means ± SD). (D) Ex vivo bioluminescence imaging of organs and carcass of a control and re-infected mouse (non-protected). (E) Ventral

images of a representative drug-cured CL Brener infected mouse (n = 6) following re-infection with the JR strain. (F) Total body bioluminescence of drug-

cured CL Brener infected mice re-infected with the JR strain. (G) Ex vivo bioluminescence imaging of organs and carcass of a control and re-infected mouse

(non-protected). (H) Ventral images of a representative drug-cured JR infected mouse (n = 6) following re-infection with the CL Brener strain. (I) Total body

bioluminescence of drug-cured JR infected mice re-infected with the CL Brener strain. (J) Ex vivo bioluminescence imaging of organs and carcass of a control

and re-infected mouse (non-protected).

https://doi.org/10.1371/journal.pntd.0007717.g007
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Drug-cure was initiated after infection for 36 days (a time-point when the adaptive CD8+ T

cell response is controlling the infection), 14 days (the peak of the acute stage), and 4 days (just

short of one complete round of the intracellular replication cycle that leads to differentiation

and parasite egress) (Fig 3). Mice infected for 36 days prior to benznidazole treatment were

highly protected from challenge (Fig 3B), with complete absence of a typical acute stage peak.

However, parasites were eventually detectable in half of the re-infected mice (Table 1). There-

fore, although drug-cured infections can generate a highly effective immune response, that

prevents a second acute phase, parasites that evade this initial encounter seem to be refractory

to immune-mediated elimination and are able to persist long term. This outcome was not sig-

nificantly influenced by the size of the challenge inoculum or the route of infection (Fig 4). Ini-

tiating treatment after 14 days was also able to prevent a detectable acute stage peak in

bioluminescence when the mice were challenged, although there was a slight reduction in the

number of mice where parasites were undetectable (Fig 3B, Table 1). In contrast, when drug-

cure was initiated after 4 days, a pronounced post-challenge acute stage peak could be

observed, but even then, the parasite burden was 85% lower than in a naive infection. There-

fore, 14 days exposure to an untreated infection is sufficient for the induction of a robust

immune response, whereas with 4 days, the response appears to be less developed, although

still sufficient to have a significant impact on the parasite burden. Studies on the protective

potential of benznidazole-cured infections have been reported previously [59], where treat-

ment was initiated 15-days post-infection. However, parasite recrudescence in these experi-

ments was monitored after cyclophosphamide-mediated immunosuppression, making it

difficult to compare the protective outcomes with those reported here.

A delayed onset of the CD8+ T cell response is a characteristic feature of Chagas disease

[60], with the first round of intracellular infections passing largely undetected by the immune

system. Upon invasion of mammalian cells, parasites rapidly escape from the phagolysosome,

there is down-modulation of the host cell immunoproteasome [61], and minimal activation of

the host-pattern recognition receptors. Induction of effective innate immunity requires a full

cycle of parasite replication, host cell lysis, and the release of trypomastigotes into the extracel-

lular milieu, a process that takes at least 4–5 days. This is followed by the production of patho-

gen-associated and damage-associated molecular patterns that promote innate immune

responses, allowing parasitized cells to flag up their infected status by MHC class I antigen pre-

sentation. Full development of the CD8+ T cell response to T. cruzi infections takes around 3

weeks [62]. In mice where curative treatment was initiated 14 or 36 days post-infection, circu-

lating parasite peptide-specific IFN-γ+ T cells were readily detectable prior to challenge (Fig

5B), and were associated with protection against the development of a second acute phase pro-

file. Experimental challenge did not lead to a significant increase in the level of circulating

IFN-γ+ T cells. Although we did not study the distinct contributions of peptide-specific CD4/

CD8 T cell responses in the periphery, it is possible that the pre-existing effector population

was able to contain the secondary challenge without further activation/expansion. Assays of

peptide-specific T cell responses in the spleen were not feasible due to the requirement for

end-point immunosuppression to promote outgrowth of the parasites. In agreement with pre-

vious studies, in some cases the parasites inoculated during the secondary challenge escaped

from immunity conferred by the drug-cured infection, and were able to survive long-term.

In mice where curative treatment was initiated 4 days into the primary infection, the level

of T. cruzi peptide-specific IFN-γ+ T cells prior to re-infection was negligible, and the kinetics

of the response induced over the first 25 days of the challenge infection was similar to that in

the controls (Fig 5). Despite this, there was an 85% reduction in the parasite burden at the

peak of the re-infection. Therefore, the induced partially protective effect in these mice is con-

ferred either by an extremely low level of circulating parasite-specific IFN-γ+ T cells, or by
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other factors that operate to moderate the infection. In mice challenged almost a year after

curative treatment of the primary infection, the level of protection was similar to mice in

which the gap between the end of treatment and challenge was only ~20 days. However, unlike

these mice, re-infection after almost a year was accompanied by induction of peptide-specific

T cells, with kinetics that were more rapid than in the naive control cohort (Fig 6). This evi-

dence for a memory response suggests that vaccine-mediated long-term protection against ful-

minant T. cruzi infection may be a feasible goal. Furthermore, if these results can be

extrapolated to humans, it would imply that patients who have undergone curative drug treat-

ment could have the added benefit of a high level of stable protection against re-infection.

We also investigated the extent to which benznidazole-cured infections could provide

cross-strain protection. T. cruzi is highly diverse, with six major genetic lineages that display

considerable geographic overlap. Taxonomy is further complicated by the widespread exis-

tence of hybrid strains [63]. Mice initially infected with the T. cruzi CL Brener (TcVI) were

challenged with the JR strain (TcI), and vice-versa. Although, suppression of the parasite bur-

den was similar to that in a homologous challenge (>99%), sterile protection was not achieved

(Fig 7), with surviving parasites persisting at very low levels. This suggests that there is a poten-

tial for co-infection with a different lineage, but that the secondary infection would be unlikely

to pass through an acute stage. It also highlights that there may be limits to the level of protec-

tion conferred on patients who have undergone curative treatment.

We have suggested a model for chronic Chagas disease [37] in which the gut (and perhaps

other tissues, such as the skin or skeletal muscle) acts as an immunologically tolerant reservoir

for T. cruzi persistence, with periodic trafficking to other sites, where the parasites are then

destroyed rapidly by immune effector mechanisms. In the heart, this can lead to cumulative

collateral damage that ultimately gives rise to cardiac pathology [64] We now further propose

that when parasites establish infections in the GI tract, or other permissive sites, they become

refractory to elimination by the vigorous adaptive responses induced by drug-cured infections.

Thus, the effectiveness of a Chagas disease vaccine could depend on the efficiency with which

the primed immune system prevents T. cruzi from reaching the relative safety of these sites of

persistence, and its ability to maintain this response over time against a wide range of strains.

The results presented here, and elsewhere [31–34, 45, 46, 53–58], highlight the possibility that

current subunit/DNA vaccines may be unable to fulfil these requirements under the schedules

used for administration, although their ability to prevent lethal outcomes [31–34, 45, 46, 54,

57] and provide therapeutic benefits [33, 53–56, 58] merits further research. In addition, the

long-term protection conferred by a drug-cured live infection suggests that the use of parasites,

suitably attenuated by genetic modification, may be an approach worth exploring to identify

an effective vaccine.

Supporting information

S1 Fig. Ex vivo imaging of organs from ASP-2/TS vaccinated mice following challenge

infection. Vaccinated BALB/c mice (n = 5) (Materials and Methods) were infected i.p. with

103 bioluminescent T. cruzi trypomastigotes and monitored by ex vivo bioluminescence imag-

ing. Organs, harvested 95 days post-challenge, were arranged as indicated. All images use the

same log10-scale heat-map with minimum and maximum radiance values as shown.

(PPTX)

S2 Fig. Assessing the curative ability of benznidazole. (A, B) In vivo imaging of BALB/c mice

infected with CL Brener (A) and JR (B) strains of T. cruzi. Treatment with benznidazole, 100

mg kg-1 once daily by the oral route for 20 days, was initiated 36 days post-infection. Following

cessation of treatment, mice were immunosuppressed with 3 doses of 200 mg kg-1
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cyclophosphamide (Materials and Methods). All images use the same log10-scale heat-map

with minimum and maximum radiance values indicated. (C and D) Total body biolumines-

cence (sum of ventral and dorsal images) of CL Brener (C) and JR (D) infected mice. Dashed

lines indicate background bioluminescence. All images use the same log10-scale heat-map with

minimum and maximum radiance values indicated. (E and F) Ex vivo bioluminescence imag-

ing of organs and carcasses from CL Brener (E) and JR (F) infected mice at the experimental

end-point. A minor bioluminescent focus was observed in the adipose tissue of mouse 1 (JR

infection). Mouse 2 (CL Brener infection) was euthanised prior to day 89, due to weight loss

during immunosuppressive treatment. It was negative by both in vivo and ex vivo imaging.

(PPTX)

S3 Fig. Benznidazole-cured infections confer significant protection against re-challenge

with the T. cruzi CL Brener strain. (A) Timeline. BALB/c mice infected i.p. with 103 trypo-

mastigotes (CL Brener strain) were subjected to curative benznidazole treatment (20 days, 100

mg kg-1) initiated 4 days or 36 days post-infection. 23 days after the end of treatment, they

were re-infected i.p. After a further 75 days, the mice were immunosuppressed using cyclo-

phosphamide (red stars) (3 x i.p. injections at 200 mg kg-1 over 9 days) and assessed by ex vivo
imaging on day 90. (B and C) Ventral and dorsal bioluminescence images from cohorts of 6

mice where treatment was initiated 4 days and 36 days, respectively, after the primary infec-

tion. The days post re-infection are indicated (left). All images use the same log10 scale heat-

map with minimum and maximum radiance values indicated. (D and E) Ex vivo biolumines-

cence imaging of organs and carcasses harvested at the experimental end-point (day 90). Yel-

low rectangles highlight bioluminescent foci. In the 4 day primary infection experiment, only

one mouse (#3) was designated as protected, whereas in the 36 day experiment, only one

mouse was non-protected (#2).

(PPTX)
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