4,375 research outputs found

    A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation of Antarctica, and implications for phytoprovincialism in the high southern latitudes

    Get PDF
    The thickest uppermost Cretaceous to lowermost Paleogene (Maastrichtian to Danian) sedimentary succession in the world is exposed on southern Seymour Island (65° South) in the James Ross Basin, Antarctic Peninsula. This fossiliferous shallow marine sequence, which spans the Cretaceous–Paleogene boundary, has allowed a high-resolution analysis of well-preserved marine palynomorphs. Previous correlation of Cretaceous–Paleogene marine palynomorph assemblages in the south polar region relied on dinoflagellate cyst biozonations from New Zealand and southern Australia. The age model of the southern Seymour Island succession is refined and placed within the stratigraphical context of the mid to high southern palaeolatitudes. Quantitative palynological analysis of a new 1102 m continuous stratigraphical section comprising the uppermost Snow Hill Island Formation and the López de Bertodano Formation (Marambio Group) across southern Seymour Island was undertaken. We propose the first formal late Maastrichtian to early Danian dinoflagellate cyst zonation scheme for the Antarctic based on this exceptional succession. Two new late Maastrichtian zones, including three subzones, and one new early Danian zone are defined. The oldest beds correlate well with the late Maastrichtian of New Zealand. In a wider context, a new South Polar Province based on Maastrichtian to Danian dinoflagellate cysts is proposed, which excludes most southern South American marine palynofloras. This interpretation is supported by models of ocean currents around Antarctica and implies an unrestricted oceanic connection across Antarctica between southern South America and the Tasman Sea

    Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network forming liquid

    Get PDF
    We study the breakdown of the Stokes-Einstein (SE) and Debye-Stokes-Einstein (DSE) relations for translational and rotational motion in a prototypical model of a network-forming liquid, the ST2 model of water. We find that the emergence of ``fractional'' SE and DSE relations at low temperature is ubiquitous in this system, with exponents that vary little over a range of distinct physical regimes. We also show that the same fractional SE relation is obeyed by both mobile and immobile dynamical heterogeneities of the liquid

    HD 207651: A Triple System with δ Scuti and Ellipsoidal Variations But No γ Doradus Pulsations

    Get PDF
    We examine HD 207651 as a possible example of a star exhibiting both γ Doradus and δ Scuti type pulsations. We find photometric periods of 0.06479 and 0.06337 days with peak-to-peak amplitudes in Johnson B of 21 and 13 mmag, respectively, clearly indicating δ Scuti pulsations. Additional light variation with a period of 0.73540 days and an even larger amplitude of 31 mmag is within the range of γ Doradus pulsation periods but results instead from the ellipticity effect. HD 207651 has a composite spectrum with a weak, narrow absorption line superposed near the center of each broad metal line. The broad-lined component is the primary of a short-period, single-lined binary, which has a period of 1.4708 days, twice the period of the ellipsoidal variations seen in the photometry. We determine the primary to be an A8 giant and estimate the unseen secondary of the short-period binary to be a mid-M dwarf. The narrow-lined star, an F7: dwarf, shows velocity variability with a period of months or perhaps years. It is thus a more distant companion to the binary, making HD 207651 a triple system. All light variations come from the A8 giant primary star. Since the 0.73540 day variation results from the ellipticity effect, HD 207651 is not an example of a star that exhibits both δ Scuti and γ Doradus pulsations. The growing number of confirmed γ Doradus stars that also occur within the δ Scuti instability strip but fail to show additional δ Scuti variability makes it increasingly unlikely that the two types of pulsation can coexist in the same star

    X-ray photoelectron and infrared spectroscopies of quartz samples of contrasting toxicity

    Get PDF
    An exploratory XPS and FTIR investigation of the surfaces of bulk quartz powders widely used in toxicological studies (DQ12 and Min-U-Sil 5) was carried with the aim of correlating surface features with toxicity as reflected by indicators of biological response. Some patches of amorphous silica were identified as well as varying amounts of calcium but none of these features correlated with biological response. No evidence of widely-quoted surface silanol (SiOH) structures was found in this investigation and the possibility that FTIR artefacts have been previously misidentified as silanol structures is discussed

    Eleven New γ Doradus Stars

    Get PDF
    We present new high-dispersion spectroscopic and precise photometric observations to identify 11 new γ Doradus variables. Seven of these new γ Doradus stars appear to be single, three are primaries of single-lined binaries, and one has two distant visual companions; none are double-lined or close visual binaries. Several of the stars show spectroscopic line-profile and low-amplitude radial velocity variability indicative of pulsation. All 11 stars are photometrically variable with amplitudes between 8 and 93 mmag in Johnson B and periods between 0.398 and 2.454 days. One star is monoperiodic; the rest have between two and five independent periods. The variability at all periods approximates a sinusoid, although three of the stars exhibit cycle-to-cycle variation in the level of maximum brightness, similar to the Blazhko effect observed in some RR Lyrae stars. We provide a new tabulation of all 54 γ Doradus stars confirmed to date and list some of their properties. All are dwarfs or subgiants and lie within a well-defined region of the H-R diagram that overlaps the cool edge of the δ Scuti instability strip. Four of the new γ Doradus variables from this paper also lie within the δ Scuti instability strip but do not exhibit the additional higher frequency variability typical of δ Scuti stars. The variability type of several of these stars given in the General Catalog of Variable Stars and in SIMBAD should now be revised

    The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1175/JAS-D-16-0055.1The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisym- metric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asym- metric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia–gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia–gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia–gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.Institute of Geophysics, Planetary Physics and Signatures (IGPPS) at Los Alamos National LaboratoryOffice of Naval Research through program element PE-0602435Institute of Geophysics, Planetary Physics and Signatures (IGPPS) at Los Alamos National LaboratoryOffice of Naval Research through program element PE-060243

    Absolute Electron Scattering Cross Sections for the CF2 Radical

    Get PDF
    Using a crossed electron-molecular beam experiment, featuring a skimmed nozzle beam with pyrolytic radical production, absolute elastic cross sections for electron scattering from the CF2 molecule have been measured. A new technique for placing measured cross sections on an absolute scale is used for molecular beams produced as skimmed supersonic jets. Absolute differential cross sections for CF2 are reported for incident electron energies of 30–50 eV and over an angular range of 20–135 deg. Integral cross sections are subsequently derived from those data. The present data are compared to new theoretical predictions for the differential and integral scattering cross sections, as calculated with the Schwinger multichannel variational method using the static-exchange and static-exchange plus polarization approximations
    • …
    corecore