44 research outputs found

    Crystal Structures of Phosphodiesterases 4 and 5 in Complex with Inhibitor 3-Isobutyl-1-methylxanthine Suggest a Conformation Determinant of Inhibitor Selectivity

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes controlling cellular concentrations of the second messengers cAMP and cGMP. Crystal structures of the catalytic domains of cGMP-specific PDE5A1 and cAMP-specific PDE4D2 in complex with the nonselective inhibitor 3-isobutyl-1-methylxanthine have been determined at medium resolution. The catalytic domain of PDE5A1 has the same topological folding as that of PDE4D2, but three regions show different tertiary structures, including residues 79-113, 208-224 (H-loop), and 341-364 (M-loop) in PDE4D2 or 535-566, 661-676, and 787-812 in PDE5A1, respectively. Because H- and M-loops are involved in binding of the selective inhibitors, the different conformations of the loops, thus the distinct shapes of the active sites, will be a determinant of inhibitor selectivity in PDEs. IBMX binds to a subpocket that comprises key residues Ile-336, Phe-340, Gln-369, and Phe-372 of PDE4D2 or Val-782, Phe-786, Gln-817, and Phe-820 of PDE5A1. This subpocket may be a common site for binding nonselective inhibitors of PDEs

    cGMP-dependent protein kinase Iα associates with the antidepressant-sensitive serotonin transporter and dictates rapid modulation of serotonin uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Na<sup>+</sup>/Cl<sup>-</sup>-dependent serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling pathways. We have shown that neuronal A3 adenosine receptor activation leads to enhanced presynaptic 5-HT transport <it>in vitro </it>and an increased rate of SERT-mediated 5-HT clearance <it>in vivo</it>. SERT stimulation by A3 adenosine receptors derives from an elevation of cGMP and subsequent activation of both cGMP-dependent protein kinase (PKG) and p38 mitogen-activated protein kinase. PKG activators such as 8-Br-cGMP are known to lead to transporter phosphorylation, though how this modification supports SERT regulation is unclear.</p> <p>Results</p> <p>In this report, we explore the kinase isoform specificity underlying the rapid stimulation of SERT activity by PKG activators. Using immortalized, rat serotonergic raphe neurons (RN46A) previously shown to support 8-Br-cGMP stimulation of SERT surface trafficking, we document expression of PKGI, and to a lower extent, PKGII. Quantitative analysis of staining profiles using permeabilized or nonpermeabilized conditions reveals that SERT colocalizes with PKGI in both intracellular and cell surface domains of RN46A cell bodies, and exhibits a more restricted, intracellular pattern of colocalization in neuritic processes. In the same cells, SERT demonstrates a lack of colocalization with PKGII in either intracellular or surface membranes. In keeping with the ability of the membrane permeant kinase inhibitor DT-2 to block 8-Br-cGMP stimulation of SERT, we found that DT-2 treatment eliminated cGMP-dependent kinase activity in PKGI-immunoreactive extracts resolved by liquid chromatography. Similarly, treatment of SERT-transfected HeLa cells with small interfering RNAs targeting endogenous PKGI eliminated 8-Br-cGMP-induced regulation of SERT activity. Co-immunoprecipitation studies show that, in transporter/kinase co-transfected cells, PKGIα specifically associates with hSERT.</p> <p>Conclusion</p> <p>Our findings provide evidence of a physical and compartmentalized association between SERT and PKGIα that supports rapid, 8-Br-cGMP-induced regulation of SERT. We discuss a model wherein SERT-associated PKGIα supports sequentially the mobilization of intracellular transporter-containing vesicles, leading to enhanced surface expression, and the production of catalytic-modulatory SERT phosphorylation, leading to a maximal enhancement of 5-HT clearance capacity.</p

    Multiple Conformations of Phosphodiesterase-5: IMPLICATIONS FOR ENZYME FUNCTION AND DRUG DEVELOPMENT

    Get PDF
    Phosphodiesterase-5 (PDE5) is the target for sildenafil, vardenafil, and tadalafil, which are drugs for treatment of erectile dysfunction and pulmonary hypertension. We report here the crystal structures of a fully active catalytic domain of unliganded PDE5A1 and its complexes with sildenafil or icarisid II. These structures together with the PDE5A1-isobutyl-1-methylxanthine complex show that the H-loop ( residues 660-683) at the active site of PDE5A1 has four different conformations and migrates 7-35 angstrom upon inhibitor binding. In addition, the conformation of sildenafil reported herein differs significantly from those in the previous structures of chimerically hybridized or almost inactive PDE5. Mutagenesis and kinetic analyses confirm that the H-loop is particularly important for substrate recognition and that invariant Gly(659), which immediately precedes the H-loop, is critical for optimal substrate affinity and catalytic activity

    Interactions between Cyclic Nucleotide Phosphodiesterase 11 Catalytic Site and Substrates or Tadalafil and Role of a Critical Gln-869 Hydrogen Bond

    No full text
    Poor understanding of the topography of cyclic nucleotide (CN) phosphodiesterase (PDE) catalytic sites compromises development of potent, selective inhibitors for therapeutic use. In the X-ray crystal structures of the catalytic domains of some PDEs, an invariant glutamine hydrogen bonds with groups at C6 and N1 or N7 on catalytic products or analogous positions of some inhibitors, inferring similar bonds with CNs (Nature 425:98–102, 2003; J Mol Biol 337:355–365, 2004; Mol Cell 15:279–286, 2004). A site-directed mutant (Q869A) lacking this invariant Gln in cGMP-/cAMP-hydrolyzing PDE11 had unaltered catalytic activity and affinity for sildenafil; but cGMP/cAMP or tadalafil affinity was reduced ∼50- or 140-fold, respectively, and calculated free energy of binding suggested one hydrogen bond for each. A cGMP analog lacking the C6 oxygen had ∼80-fold weakened affinity, modifications at N2, N7, or 2′-OH diminished affinity ∼16-fold, and analogs with groups appended at N1 had only 2- to 6-fold weakened affinity. Analogs with C8 substitutions were ineffective inhibitors, suggesting that cGMP binds in the anti conformation. Calculated decline in free energy of binding was consistent with that for one hydrogen bond only in the analog lacking binding potential at C6. In conclusion, Gln-869 interacts strongly with cGMP/cAMP and tadalafil, but not with sildenafil; interactions with CN analogs suggest a hydrogen bond only between Gln-869 and the C6 substituent. The results define interactions between the PDE11 catalytic site and substrates/inhibitors and advance potential for inhibitor design

    cGMP-dependent protein kinase protects cGMP from hydrolysis by phosphodiesterase-5.

    No full text
    The physiological effects of cGMP are largely determined by the activities of intracellular receptors, including cGMP-dependent protein kinase (PKG) and cGMP-binding cyclic nucleotide phosphodiesterases (PDEs), and the distribution of cGMP among these receptors dictates activity of the signalling pathway. In the present study, the effects of PKG-Ialpha or PKG-Ibeta on the rate of cGMP hydrolysis by the isolated PDE5 catalytic domain were examined. PKG-Ialpha strongly inhibited cGMP hydrolysis with an IC(50) value of 217 nM, which is similar to the physiological concentration of PKG in pig coronary artery reported previously. By contrast, PKG-Ibeta, which has lower affinity for cGMP than does PKG-Ialpha, inhibited cGMP hydrolysis with an IC(50) of approx. 1 microM. Inhibition by PKG-Ialpha was more effective than that by PKG-Ibeta, consistent with their relative affinities for cGMP. Autophosphorylation of PKGs increased their cGMP-binding affinities and their inhibitory effects on PDE5 hydrolysis of cGMP. Autophosphorylation of PKG-Ibeta increased its inhibitory potency on PDE5 hydrolysis of cGMP by 10-fold compared with a 2-fold increase upon autophosphorylation of PKG-Ialpha. The results indicate that cGMP bound to allosteric cGMP-binding sites of PKG is protected from hydrolysis by PDE5 and that persistent protection of cGMP by either non-phosphorylated or autophosphorylated PKGs may be a positive-feedback control to sustain cGMP signalling

    Regulation of cyclic nucleotide levels by sequestration.

    No full text
    corecore