20 research outputs found

    Rapid single step atmospheric pressure plasma jet deposition of a SERS active surface

    Get PDF
    A helium gas atmospheric pressure plasma jet (APPJ) is used to prepare a silver-based SERS substrate. The Raman enhancement from substrates created using APPJ compares well with two commercially available silver-based SERS substrates and an in-house prepared physical deposition of pre-synthesised silver nanoparticles. An aqueous solution of rudimentary silver salt was required as an ink to deposit zero valent silver in a single step with no post processing. An array of 16 × 16 silver ‘islands’ are printed on borosilicate glass, each island taking 5 seconds to print with a power of < 14 W to sustain the plasma. The SERS response was assessed using 4-mercaptobenzoic acid and rhodamine 6G as model analytes, with a calculated detection limit of 1 × 10−6 M. Also demonstrated is the removal of analyte from the surface after Raman measurement by exposure to helium APPJ doped with oxygen followed by hydrogen to restore zero baseline. This regeneration takes less than 10 seconds and allows for replicate measurements using the same SERS substrate

    FDG-PET/CT in colorectal cancer:potential for vascular-metabolic imaging to provide markers of prognosis

    Get PDF
    PURPOSE: This study assesses the potential for vascular-metabolic imaging with FluoroDeoxyGlucose (FDG)–Positron Emission Tomography/Computed Tomography (PET/CT) perfusion to provide markers of prognosis specific to the site and stage of colorectal cancer. METHODS: This prospective observational study comprised of participants with suspected colorectal cancer categorized as either (a) non-metastatic colon cancer (M0colon), (b) non-metastatic rectal cancer (M0rectum), or (c) metastatic colorectal cancer (M+). Combined FDG-PET/CT perfusion imaging was successfully performed in 286 participants (184 males, 102 females, age: 69.60 ± 10 years) deriving vascular and metabolic imaging parameters. Vascular and metabolic imaging parameters alone and in combination were investigated with respect to overall survival. RESULTS: A vascular-metabolic signature that was significantly associated with poorer survival was identified for each patient group: M0colon – high Total Lesion Glycolysis (TLG) with increased Permeability Surface Area Product/Blood Flow (PS/BF), Hazard Ratio (HR) 3.472 (95% CI: 1.441–8.333), p = 0.006; M0rectum – high Metabolic Tumour Volume (MTV) with increased PS/BF, HR 4.567 (95% CI: 1.901–10.970), p = 0.001; M+ participants, high MTV with longer Time To Peak (TTP) enhancement, HR 2.421 (95% CI: 1.162–5.045), p = 0.018. In participants with stage 2 colon cancer as well as those with stage 3 rectal cancer, the vascular-metabolic signature could stratify the prognosis of these participants. CONCLUSION: Vascular and metabolic imaging using FDG-PET/CT can be used to synergise prognostic markers. The hazard ratios suggest that the technique may have clinical utility
    corecore