118 research outputs found

    Brainstem evoked potentials and magnetic resonance imaging abnormalities in differential diagnosis of intracranial hypotension

    Get PDF
    Objective: To compare brainstem acoustic evoked potentials (BAEP)and magnetic resonance imaging (MRI)in the differential diagnosis of intracranial hypotension (IH), Chiari malformation (CM)and sensorineural hearing loss (SNHL). Methods: BAEP were recorded in 18 IH, 18 CM, 20 SNHL patients and 52 controls. MRI were acquired in all IH and CM patients. Results: Abnormal BAEP were observed in 94% of IH patients, in 33% of CM and 70% of SNHL patients. After recovery from IH, BAEP abnormalities disappeared. Internal auditory canal (IAC)MRI abnormalities were described in 88% of IH patients. MRI signs of IH were observed in 33\u201378% in IH patients, but the most frequent MRI sign was 8th nerve T2 hyperintensity, with contrast enhancement in T1 sequences. This finding, combined with wave I latency, yielded highest specificity and sensitivity for IH diagnosis. Conclusions: Our study points out how IH can be effectively distinguished from CM and SNHL through the contribution of neurophysiology and MRI; in particular, evaluation of the 8th nerve achieves a high sensitivity and specificity in patients with IH. Further studies are required to examine the combined use of BAEP recordings ad MRI in diagnosis and monitoring of patients affected by IH

    A Critical Review of Alien Limb-Related Phenomena and Implications for Functional Magnetic Resonance Imaging Studies

    Get PDF
    Consensus criteria on corticobasal degeneration (CBD) include alien limb (AL) phenomena. However, the gist of the behavioral features of AL is still “a matter of debate.” CBD-related AL has so far included the description of involuntary movements, frontal release phenomena (frontal AL), or asomatognosia (posterior or “real” AL). In this context, the most frequent symptoms are language and praxis deficits and cortical sensory misperception. However, asomatognosia requires, by definition, intact perception and cognition. Thus, to make a proper diagnosis of AL in the context of CBD, cognitive and language dysfunctions must be carefully verified and objectively assessed. We reviewed the current literature on AL in CBD and now propose that the generic use of the term AL should be avoided. This catchall AL term should instead be deconstructed. We propose that the term AL is appropriate to describe clinical features associated with specific brain lesions. More discrete sets of regionally bound clinical signs that depend on dysfunctions of specific brain areas need to be assessed and presented when posing the diagnosis. Thus, in our opinion, the AL term should be employed in association with precise descriptions of the accompanying involuntary movements, sensory misperceptions, agnosia-asomatognosia contents, and the presence of utilization behavior. The review also offers an overview of functional magnetic resonance imaging-based studies evaluating AL-related phenomena. In addition, we provide a complementary set of video clips depicting CBD-related involuntary movements that should not mistakenly be interpreted as signs of AL

    Effects of Transcranial Direct Current Stimulation on Episodic Memory Related to Emotional Visual Stimuli

    Get PDF
    The present study investigated emotional memory following bilateral transcranial electrical stimulation (direct current of 1 mA, for 20 minutes) over fronto-temporal cortical areas of healthy participants during the encoding of images that differed in affective arousal and valence. The main result was a significant interaction between the side of anodal stimulation and image emotional valence. Specifically, right anodal/left cathodal stimulation selectively facilitated the recall of pleasant images with respect to both unpleasant and neutral images whereas left anodal/right cathodal stimulation selectively facilitated the recall of unpleasant images with respect to both pleasant and neutral images. From a theoretical perspective, this double dissociation between the side of anodal stimulation and the advantage in the memory performance for a specific type of stimulus depending on its pleasantness supported the specific-valence hypothesis of emotional processes, which assumes a specialization of the right hemisphere in processing unpleasant stimuli and a specialization of the left hemisphere in processing pleasant stimuli. From a methodological point of view, first we found tDCS effects strictly dependent on the stimulus category, and second a pattern of results in line with an interfering and inhibitory account of anodal stimulation on memory performance. These findings need to be carefully considered in applied contexts, such as the rehabilitation of altered emotional processing or eye-witness memory, and deserve to be further investigated in order to understand their underlying mechanisms of action

    MEG resting state functional connectivity in Parkinson's disease related dementia

    Get PDF
    Parkinson's disease (PD) related dementia (PDD) develops in up to 60% of patients, but the pathophysiology is far from being elucidated. Abnormalities of resting state functional connectivity have been reported in Alzheimer's disease (AD). The present study was performed to determine whether PDD is likewise characterized by changes in resting state functional connectivity. MEG recordings were obtained in 13 demented and 13 non-demented PD patients. The synchronization likelihood (SL) was calculated within and between cortical areas in six frequency bands. Compared to non-demented PD, PDD was characterized by lower fronto-temporal SL in the alpha range, lower intertemporal SL in delta, theta and alpha1 bands as well as decreased centro-parietal gamma band synchronization. In addition, higher parieto-occipital synchronization in the alpha2 and beta bands was found in PDD. The observed changes in functional connectivity are reminiscent of changes in AD, and may reflect reduced cholinergic activity and/or loss of cortico-cortical anatomical connections in PDD. © 2008 The Author(s)

    The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    Get PDF
    Purpose In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity compared to healthy controls and that particularly global slowing correlates with neurocognitive dysfunction. Patient and methods Resting state MEG recordings were obtained from 17 LGG patients and 17 age-, sex-, and education-matched healthy controls. Relative spectral power was calculated in the delta, theta, upper and lower alpha, beta, and gamma frequency band. A battery of standardized neurocognitive tests measuring 6 neurocognitive domains was administered. Results LGG patients showed a slowing of the resting state brain activity when compared to healthy controls. Decrease in relative power was mainly found in the gamma frequency band in the bilateral frontocentral MEG regions, whereas an increase in relative power was found in the theta frequency band in the left parietal region. An increase of the relative power in the theta and lower alpha band correlated with impaired executive functioning, information processing, and working memory. Conclusion LGG patients are characterized by global slowing of their resting state brain activity and this slowing phenomenon correlates with the observed neurocognitive deficits

    Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Slow waves in the delta (0.5–4 Hz) frequency range are indications of normal activity in sleep. In neurological disorders, focal electric and magnetic slow wave activity is generated in the vicinity of structural brain lesions. Initial studies, including our own, suggest that the distribution of the focal concentration of generators of slow waves (dipole density in the delta frequency band) also distinguishes patients with psychiatric disorders such as schizophrenia, affective disorders, and posttraumatic stress disorder.</p> <p>Methods</p> <p>The present study examined the distribution of focal slow wave activity (ASWA: abnormal slow wave activity) in116 healthy subjects, 76 inpatients with schizophrenic or schizoaffective diagnoses and 42 inpatients with affective (ICD-10: F3) or neurotic/reactive (F4) diagnoses using a newly refined measure of dipole density. Based on 5-min resting magnetoencephalogram (MEG), sources of activity in the 1–4 Hz frequency band were determined by equivalent dipole fitting in anatomically defined cortical regions.</p> <p>Results</p> <p>Compared to healthy subjects the schizophrenia sample was characterized by significantly more intense slow wave activity, with maxima in frontal and central areas. In contrast, affective disorder patients exhibited less slow wave generators mainly in frontal and central regions when compared to healthy subjects and schizophrenia patients. In both samples, frontal ASWA were related to affective symptoms.</p> <p>Conclusion</p> <p>In schizophrenic patients, the regions of ASWA correspond to those identified for gray matter loss. This suggests that ASWA might be evaluated as a measure of altered neuronal network architecture and communication, which may mediate psychopathological signs.</p

    The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production

    Full text link
    The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module includes also calibration instruments and electronics for power, readout and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and several prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, 828 until October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. After the validation of a pre-production series, a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure the safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespa

    Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis.

    No full text
    The major limitation for the acquisition of high-quality magnetoencephalography (MEG) recordings is the presence of disturbances of physiological and technical origins: eye movements, cardiac signals, muscular contractions, and environmental noise are serious problems for MEG signal analysis. In the last years, multi-channel MEG systems have undergone rapid technological developments in terms of noise reduction, and many processing methods have been proposed for artifact rejection. Independent component analysis (ICA) has already shown to be an effective and generally applicable technique for concurrently removing artifacts and noise from the MEG recordings. However, no standardized automated system based on ICA has become available so far, because of the intrinsic difficulty in the reliable categorization of the source signals obtained with this technique. In this work, approximate entropy (ApEn), a measure of data regularity, is successfully used for the classification of the signals produced by ICA, allowing for an automated artifact rejection. The proposed method has been tested using MEG data sets collected during somatosensory, auditory and visual stimulation. It was demonstrated to be effective in attenuating both biological artifacts and environmental noise, in order to reconstruct clear signals that can be used for improving brain source localizations
    corecore