6 research outputs found
Recommended from our members
The energy-related inventions program: Continuing benefits to the inventor community
This report provides information on the economic, energy, and environmental impacts of inventions supported by the Energy-Related Inventions Program (ERIP) - a technology commercialization program jointly operated by the U.S. Department of Energy (DOE) and the National Institute of Standards and Technology (NIST). It describes the results of the latest in a series of ERIP evaluation projects that have been completed since 1980. The period of interest is 1980 through 1994. The evaluation is based on data collected in 1995 through mail and telephone surveys of 211 program participants, and historical data collected during previous evaluations for an additional 253 participants. As of September 1993, a total of 609 inventions had been recommended to DOE by NIST, which screens all submitted inventions for technical merit, potential for commercial success, and potential energy impact. By the end of 1994, at least 144 (or 24%) of these inventions had entered the market, generating total cumulative sales of 2.3 million, and over the lifetime of the program, royalties total 47.5 million in grants awarded from 1975 through 1994 and 3.4 million in individual income taxes to the U.S. Treasury. Finally, approximately $334 million of energy expenditures were saved in 1994 as a result of the commercial success of five ERIP projects. These energy savings resulted in reduced emissions of 2.1 million metric tons of carbon in 1994 alone
Block Shear Capacity of Bolted Connections in Cold-Reduced Steel Sheets
This paper examines the mechanisms for block shear failures of bolted connections in steel plates postulated in the design equations specified in the North American, European and Australian steel structures codes. It explains that there is only one feasible mechanism for the limit state of conventional block shear failure, that which involves tensile rupture and shear yielding, irrespective of the steel material ductility. It describes the fundamental shortcomings of various code equations for determining the block shear capacity of a bolted connection. Based on the tensile rupture and shear yielding mechanism, an in-plane shear lag factor, and the active shear resistance planes identified in the present work, this paper proposes a rational equation that is demonstrated to provide more accurate results compared to all the code equations in predicting the block shear capacities of bolted connections in G450 steel sheets subjected to concentric loading. The resistance factor of 0.8 for the proposed equation is computed with respect to the LRFD approach given in the North American specification for the design of cold-formed steel structures
Recommended from our members
The Energy-Related Inventions Program: A decade of commercial progress
This report provides information on the recent commercial progress of inventions supported by the US Department of Energy`s Energy-Related Inventions Programs (ERIP). It describes the results of the latest in a series of ERIP evaluation projects that have been completed since 1980. It focuses on the economic impacts of the program, notably sales and employment benefits. The period of interest is 1980 through 1990. The evaluation is based on data collected through mail and telephone surveying of 143 participants in the Program. As of October 1989, a total of 486 inventions were recommended to DOE by the National Institute for Standards and Technology, which screens all submitted inventions in terms of technical merit, potential for commercial success, and potential energy impact. By the end of 1990, at least 109 of these inventions had entered the market, generating total cumulative sales of more than 25.7 million in grants awarded from 1975 through 1990, and $63.1 million in program appropriations over the same period, ERIP has generated a 20:1 return in terms of sales values to grants, and an 8:1 return in sales versus program appropriations. It is estimated that 25% of all ERIP inventions had achieved sales by the end of 1990. While it is difficult to make exact comparisons between these percentages and other indicators of the success rates of technological innovations as a whole, the ERIP figures remain impressive. The commercial progress of spin-off technologies is also documented
Recommended from our members
A comparison group analysis of DOE's Energy-Related Inventions Program
Over the past decade, Oak Ridge National Laboratory has conducted four evaluations of the economic impacts of the US DOE's Energy-Related Inventions Program (ERIP). None of these evaluations has involved the use of a comparison group. Instead, statistics on the innovation process have been compiled from a review of the literature. Unfortunately, the types of technologies and inventors documents by previous studies do not match those supported by the Energy-Related Inventions Program. ERIP-supported technologies are diverse in both application and technical complexity. ERIP-supported inventors are a particular subset of inventors: the Program targets inventors who are either independently employed or are employees of a small business. The purpose of this task is to identify and characterize a matched comparison group of inventors whose progress can be compared with the progress of ERIP inventors. With this comparison group, we will be able to assess more accurately the impact of the ERIP support and thereby strengthen the program's impact evaluations. This report is divided into six sections. As background to understanding the comparison group design and the results provided in this report, section 1.3 provides an overview of the Energy-Related Inventions Program. Section 2 describes the research design used to define and characterize a suitable comparison group. Section 3 presents comparative statistics describing both the comparison group and the ERIP technologies. Section 4 is more qualitative in nature; it describes four technologies in the comparison group that were commercially successful, focusing on how they succeeded in the absence of DOE/ERIP support. The report ends with a summary of its findings (section 5) and a list of references (section 6)