108 research outputs found

    Developmentally Restricted Genetic Determinants of Human Arsenic Metabolism: Association between Urinary Methylated Arsenic and CYT19 Polymorphisms in Children

    Get PDF
    We report the results of a screen for genetic association with urinary arsenic metabolite levels in three arsenic metabolism candidate genes, PNP, GSTO, and CYT19, in 135 arsenic-exposed subjects from the Yaqui Valley in Sonora, Mexico, who were exposed to drinking water concentrations ranging from 5.5 to 43.3 ppb. We chose 23 polymorphic sites to test in the arsenic-exposed population. Initial phenotypes evaluated included the ratio of urinary inorganic arsenic(III) to inorganic arsenic(V) and the ratio of urinary dimethylarsenic(V) to monomethylarsenic(V) (D:M). In the initial association screening, three polymorphic sites in the CYT19 gene were significantly associated with D:M ratios in the total population. Subsequent analysis of this association revealed that the association signal for the entire population was actually caused by an extremely strong association in only the children (7–11 years of age) between CYT19 genotype and D:M levels. With children removed from the analysis, no significant genetic association was observed in adults (18–79 years). The existence of a strong, developmentally regulated genetic association between CYT19 and arsenic metabolism carries import for both arsenic pharmacogenetics and arsenic toxicology, as well as for public health and governmental regulatory officials

    A Population-Based Case–Control Study of Urinary Arsenic Species and Squamous Cell Carcinoma in New Hampshire, USA

    Get PDF
    Background: Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. Objective: We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. Methods: We conducted a population-based case–control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (ΣAs). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. Results: In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ΣAs concentration [ln(ΣAs)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. Conclusions: These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association

    Biomarkers of Exposure: A Case Study with Inorganic Arsenic

    Get PDF
    The environmental contaminant inorganic arsenic (iAs) is a human toxicant and carcinogen. Most mammals metabolize iAs by reducing it to trivalency, followed by oxidative methylation to pentavalency. iAs and its methylated metabolites are primarily excreted in urine within 4–5 days by most species and have a relatively low rate of bioaccumulation. Intra- and interindividual differences in the methylation of iAs may affect the adverse health effects of arsenic. Both inorganic and organic trivalent arsenicals are more potent toxicants than pentavalent forms. Several mechanisms of action have been proposed for arsenic-induced toxicity, but a scientific consensus has not been achieved. Biomarkers of exposure may be used to quantify exposure to iAs. The most common biomarker of exposure for iAs is the measurement of total urinary arsenic. However, consumption of seafood containing high concentrations of organic arsenic can confound estimation of iAs exposure. Because these organic species are thought to be relatively nontoxic, their presence in urine may not represent increased risk. Speciation of urinary arsenic into inorganic and organic forms, and even oxidation state, gives a more definitive indication of the exposure to iAs. Questions still remain, however, as to how reliably the measurement of urinary arsenic, either total or speciated, may predict arsenic concentrations at target tissues as well as how this measurement could be used to assess chronic exposures to iAs

    Can italian healthcare administrative databases be used to compare regions with respect to compliance with standards of care for chronic diseases?

    Get PDF
    BACKGROUND: Italy has a population of 60 million and a universal coverage single-payer healthcare system, which mandates collection of healthcare administrative data in a uniform fashion throughout the country. On the other hand, organization of the health system takes place at the regional level, and local initiatives generate natural experiments. This is happening in particular in primary care, due to the need to face the growing burden of chronic diseases. Health services research can compare and evaluate local initiatives on the basis of the common healthcare administrative data.However reliability of such data in this context needs to be assessed, especially when comparing different regions of the country. In this paper we investigated the validity of healthcare administrative databases to compute indicators of compliance with standards of care for diabetes, ischaemic heart disease (IHD) and heart failure (HF). METHODS: We compared indicators estimated from healthcare administrative data collected by Local Health Authorities in five Italian regions with corresponding estimates from clinical data collected by General Practitioners (GPs). Four indicators of diagnostic follow-up (two for diabetes, one for IHD and one for HF) and four indicators of appropriate therapy (two each for IHD and HF) were considered. RESULTS: Agreement between the two data sources was very good, except for indicators of laboratory diagnostic follow-up in one region and for the indicator of bioimaging diagnostic follow-up in all regions, where measurement with administrative data underestimated quality. CONCLUSION: According to evidence presented in this study, estimating compliance with standards of care for diabetes, ischaemic heart disease and heart failure from healthcare databases is likely to produce reliable results, even though completeness of data on diagnostic procedures should be assessed first. Performing studies comparing regions using such indicators as outcomes is a promising development with potential to improve quality governance in the Italian healthcare system

    Cadmium body burden and increased blood pressure in middle-aged American Indians: the Strong Heart Study

    Get PDF
    Cadmium (Cd) is an environmental pollutant that has been associated with cardiovascular disease in populations, but the relationship of Cd with hypertension has been inconsistent. We studied the association between urinary Cd concentrations, a measure of total body burden, and blood pressure in American Indians, a US population with above national average Cd burden. Urinary Cd was measured using inductively coupled plasma mass spectrometry, and adjusted for urinary creatinine concentration. Among 3714 middle-aged American Indian participants of the Strong Heart Study (mean age 56 years, 41% male, 67% ever-smokers, 23% taking antihypertensive medications), urinary Cd ranged from 0.01 to 78.48 μg g1^{-1} creatinine (geometric mean=0.94 μg g1^{-1}) and it was correlated with smoking pack-year among ever-smokers (r2^{2}=0.16, P<0.0001). Participants who were smokers were on average light-smokers (mean 10.8 pack-years), and urinary Cd was similarly elevated in light- and never-smokers (geometric means of 0.88 μg g1^{-1} creatinine for both categories). Log-transformed urinary Cd was significantly associated with higher systolic blood pressure in models adjusted for age, sex, geographic area, body mass index, smoking (ever vs never, and cumulative pack-years) and kidney function (mean blood pressure difference by lnCd concentration (β)=1.64, P=0.002). These associations were present among light- and never-smokers (β=2.03, P=0.002, n=2627), although not significant among never-smokers (β=1.22, P=0.18, n=1260). Cd was also associated with diastolic blood pressure among light- and never-smokers (β=0.94, P=0.004). These findings suggest that there is a relationship between Cd body burden and increased blood pressure in American Indians, a population with increased cardiovascular disease risk.This research is supported by the NHLBI HL123677-02 to NF and the NIEHS training grant (ES007141-32) to PB. MTP was supported by the Strategic Action for Research in Health sciences [CP12/03080], which is an initiatives from Carlos III Health Institute Madrid and the Spanish Ministry of Economy and Competitiveness and are co-funded with European Funds for Regional Development (FEDER)

    Interaction proteomics of synapse protein complexes

    Get PDF
    The brain integrates complex types of information, and executes a wide range of physiological and behavioral processes. Trillions of tiny organelles, the synapses, are central to neuronal communication and information processing in the brain. Synaptic transmission involves an intricate network of synaptic proteins that forms the molecular machinery underlying transmitter release, activation, and modulation of transmitter receptors and signal transduction cascades. These processes are dynamically regulated and underlie neuroplasticity, crucial to learning and memory formation. In recent years, interaction proteomics has increasingly been used to elucidate the constituents of synaptic protein complexes. Unlike classic hypothesis-based assays, interaction proteomics detects both known and novel interactors without bias. In this trend article, we focus on the technical aspects of recent proteomics to identify synapse protein complexes, and the complementary methods used to verify the protein–protein interaction. Moreover, we discuss the experimental feasibility of performing global analysis of the synapse protein interactome

    Integrating Multiple Biomarkers of Fish Health: A Case Study of Fish Health in Ports

    Get PDF
    Biomarkers of fish health are recognised as valuable biomonitoring tools that inform on the impact of pollution on biota. The integration of a suite of biomarkers in a statistical analysis that better illustrates the effects of exposure to xenobiotics on living organisms is most informative; however, most published ecotoxicological studies base the interpretation of results on individual biomarkers rather than on the information they carry as a set. To compare the interpretation of results from individual biomarkers with an interpretation based on multivariate analysis, a case study was selected where fish health was examined in two species of fish captured in two ports located in Western Australia. The suite of variables selected included chemical analysis of white muscle, body condition index, liver somatic index (LSI), hepatic ethoxyresorufin-O-deethylase activity, serum sorbitol dehydrogenase activity, biliary polycyclic aromatic hydrocarbon metabolites, oxidative DNA damage as measured by serum 8-oxo-dG, and stress protein HSP70 measured on gill tissue. Statistical analysis of individual biomarkers suggested little consistent evidence of the effects of contaminants on fish health. However, when biomarkers were integrated as a set by principal component analysis, there was evidence that the health status of fish in Fremantle port was compromised mainly due to increased LSI and greater oxidative DNA damage in fish captured within the port area relative to fish captured at a remote site. The conclusions achieved using the integrated set of biomarkers show the importance of viewing biomarkers of fish health as a set of variables rather than as isolated biomarkers of fish health

    Importance of a C-Terminal Conserved Region of Chk1 for Checkpoint Function

    Get PDF
    BACKGROUND: The protein kinase Chk1 is an essential component of the DNA damage checkpoint pathway. Chk1 is phosphorylated and activated in the fission yeast Schizosaccharomyces pombe when cells are exposed to agents that damage DNA. Phosphorylation, kinase activation, and nuclear accumulation are events critical to the ability of Chk1 to induce a transient delay in cell cycle progression. The catalytic domain of Chk1 is well-conserved amongst all species, while there are only a few regions of homology within the C-terminus. A potential pseudosubstrate domain exists in the C-terminus of S. pombe Chk1, raising the possibility that the C-terminus acts to inhibit the catalytic domain through interaction of this domain with the substrate binding site. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate this hypothesis, we characterized mutations in the pseudosubstrate region. Mutation of a conserved aspartic acid at position 469 to alanine or glycine compromises Chk1 function when the mutants are integrated as single copies, demonstrating that this domain of Chk1 is critical for function. Our data does not support, however, the hypothesis that the domain acts to inhibit Chk1 function as other mutations in the amino acids predicted to comprise the pseudosubstrate do not result in constitutive activation of the protein. When expressed in multi-copy, Chk1D469A remains non-functional. In contrast, multi-copy Chk1D469G confers cell survival and imposes a checkpoint delay in response to some, though not all forms of DNA damage. CONCLUSIONS/SIGNIFICANCE: Thus, we conclude that this C-terminal region of Chk1 is important for checkpoint function and predict that a limiting factor capable of associating with Chk1D469G, but not Chk1D469A, interacts with Chk1 to elicit checkpoint activation in response to a subset of DNA lesions

    Role of NADPH Oxidase versus Neutrophil Proteases in Antimicrobial Host Defense

    Get PDF
    NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox−/−) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)−/−×cathepsin G (CG)−/− mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox−/− mice, whereas NE−/−×CG−/− mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens
    corecore