95 research outputs found

    Tensile energy dissipation and mechanical properties of the knee meniscus: relationship with fiber orientation, tissue layer, and water content

    Get PDF
    Introduction: The knee meniscus distributes and dampens mechanical loads. It is composed of water (∼70%) and a porous fibrous matrix (∼30%) with a central core that is reinforced by circumferential collagen fibers enclosed by mesh-like superficial tibial and femoral layers. Daily loading activities produce mechanical tensile loads which are transferred through and dissipated by the meniscus. Therefore, the objective of this study was to measure how tensile mechanical properties and extent of energy dissipation vary by tension direction, meniscal layer, and water content.Methods: The central regions of porcine meniscal pairs (n = 8) were cut into tensile samples (4.7 mm length, 2.1 mm width, and 0.356 mm thickness) from core, femoral and tibial components. Core samples were prepared parallel (circumferential) and perpendicular (radial) to the fibers. Tensile testing consisted of frequency sweeps (0.01–1Hz) followed by quasi-static loading to failure. Dynamic testing yielded energy dissipation (ED), complex modulus (E*), and phase shift (δ) while quasi-static tests yielded Young’s Modulus (E), ultimate tensile strength (UTS), and strain at UTS (εUTS). To investigate how ED is influenced by the specific mechanical parameters, linear regressions were performed. Correlations between sample water content (φw) and mechanical properties were investigated. A total of 64 samples were evaluated.Results: Dynamic tests showed that increasing loading frequency significantly reduced ED (p < 0.05). Circumferential samples had higher ED, E*, E, and UTS than radial ones (p < 0.001). Stiffness was highly correlated with ED (R2 > 0.75, p < 0.01). No differences were found between superficial and circumferential core layers. ED, E*, E, and UTS trended negatively with φw (p < 0.05).Discussion: Energy dissipation, stiffness, and strength are highly dependent on loading direction. A significant amount of energy dissipation may be associated with time-dependent reorganization of matrix fibers. This is the first study to analyze the tensile dynamic properties and energy dissipation of the meniscus surface layers. Results provide new insights on the mechanics and function of meniscal tissue

    The IBISCO survey: I. Multiphase discs and winds in the Seyfert galaxy Markarian 509

    Get PDF
    We present the analysis of the ALMA CO(2 1) emission line and the underlying 1.2mm continuum of Mrk 509 with spatial resolution of similar to 270 pc. This local Seyfert 1.5 galaxy, optically classified as a spheroid, is known to host an ionised disc, a starburst ring, and ionised gas winds on both nuclear (ultra-fast outflows) and galactic scales. From CO(2 1) we estimate a molecular gas reservoir of M-H2 = 1.7 x10(9) M-circle dot, located within a disc of size similar to 5.2 kpc, with M-dyn = (2.0 +/- 1.1) x 10(10) M-circle dot inclined at 44 +/- 10 deg. The molecular gas fraction within the disc is mu(gas) = 5%, consistent with that of local star-forming galaxies with similar stellar mass. The gas kinematics in the nuclear region within r similar to 700 pc, that is only marginally resolved at the current angular resolution, suggests the presence of a warped nuclear disc. Both the presence of a molecular disc with ongoing star formation in a starburst ring, and the signatures of a minor merger, are in agreement with the scenario where galaxy mergers produce gas destabilisation, feeding both star formation and AGN activity. The spatially resolved Toomre Q-parameter across the molecular disc is in the range Q(gas) = 0.5-10, and shows that the disc is marginally unstable across the starburst ring, and stable against fragmentation at nucleus and in a lopsided ring-like structure located inside of the starburst ring. We find complex molecular gas kinematics and significant kinematics perturbations at two locations, one within 300 pc of the nucleus and one 1.4 kpc away close to the region with high Q(gas), that we interpret as molecular winds with velocity v(98) = 200-250 km s(-1). The total molecular outflow rate is in the range 6.4-17.0 M-circle dot yr(-1) for the optically thin and thick cases, respectively. The molecular wind total kinetic energy is consistent with a multiphase momentum-conserving wind driven by the AGN with P-of/P-rad in the range 0.06-0.5. The spatial overlap of the inner molecular wind with the ionised wind, and their similar velocity suggest a cooling sequence within a multiphase wind driven by the AGN. The second outer molecular wind component overlaps with the starburst ring, and its energy is consistent with a supernova-driven wind arising from the starburst ring

    NGC 2992: The interplay between the multiphase disk, wind and radio bubbles

    Full text link
    We present an analysis of the gas kinematics in NGC 2992, based on VLT/MUSE, ALMA and VLA data, aimed at characterising the disk, the wind and their interplay in the cold molecular and warm ionised phases. CO(2-1) and Hα \rm \alpha~ arise from a multiphase disk with inclination 80 deg and radii 1.5 and 1.8 kpc, respectively. We find that the velocity dispersion of the cold molecular phase is consistent with that of star forming galaxies at the same redshift, except in the inner 600 pc region, and in the region between the cone walls and the disk. This suggests that a disk-wind interaction locally boosts the gas turbulence. We detect a clumpy ionised wind distributed in two wide opening angle ionisation cones reaching scales of 7 kpc. The [O III] wind expands with velocity exceeding -1000 km/s in the inner 600 pc, a factor of 5 larger than the previously reported wind velocity. Based on spatially resolved electron density and ionisation parameter maps, we infer an ionised outflow mass of Mof,ion=(3.2±0.3)× 107 M⊙M_{\rm of,ion} = (3.2 \pm 0.3) \times \, 10^7 \, M_{\odot}, and a total ionised outflow rate of M˙of,ion=13.5±1\dot M_{\rm of,ion}=13.5\pm1 \sfr. We detected clumps of cold molecular gas located above and below the disk reaching maximum projected distances and velocities of 1.7 kpc and 200 km/s, respectively. On these scales, the wind is multiphase, with a fast ionised component and a slower molecular one, and a total mass of Mof,ion+mol=5.8×107 M⊙M_{\rm of, ion+mol}= 5.8 \times 10^7 \, M_{\odot}, of which the molecular component carries the bulk of the mass. The dusty molecular outflowing clumps and the turbulent ionised gas are located at the edges of the radio bubbles, suggesting that the bubbles interact with the surrounding medium through shocks. We detect a dust reservoir co-spatial with the molecular disk, with a cold dust mass Mdust=(4.04±0.03)× 106 M⊙M_{\rm dust} = (4.04 \pm 0.03) \times \, 10^{6} \, M_{\odot}.Comment: 19 pages, 17 figures, 6 tables; Accepted by A&

    The WISSH quasars project XI. The mean Spectral Energy Distribution and Bolometric Corrections of the most luminous quasars

    Full text link
    Hyper-luminous Quasi-Stellar Objects (QSOs) represent the ideal laboratory to investigate Active Galactic Nuclei (AGN) feedback mechanism since their formidable energy release causes powerful winds at all scales and thus the maximum feedback is expected. We aim at deriving the mean Spectral Energy Distribution (SED) of a sample of 85 WISE-SDSS Selected Hyper-luminous (WISSH) quasars. Since the SED provides a direct way to investigate the AGN structure, our goal is to understand if quasars at the bright end of the luminosity function have peculiar properties compared to the bulk of the population. We built a mean intrinsic SED after correcting for the dust extinction, absorption and emission lines and intergalactic medium absorption. We also derived bolometric, IR band and monochromatic luminosities together with bolometric corrections at lambda = 5100 A and 3 micron. We define a new relation for the 3 micron bolometric correction. We find that the mean SED of hyper-luminous WISSH QSOs is different from that of less luminous sources, i.e. a relatively lower X-ray emission and a near and mid IR excess which can be explained assuming a larger dust contribution. WISSH QSOs have stronger emission from both warm and very hot dust, the latter being responsible for shifting the typical dip of the AGN SED from 1.3 to 1.1 micron. We also derived the mean SEDs of two sub-samples created according to the presence of Broad Absorption Lines and equivalent width of CIV line. We confirm that BALs are X-ray weak and that they have a reddened UV-optical continuum. We also find that BALs tend to have stronger emission from the hot dust component. This analysis suggests that hyper-luminous QSOs have a peculiar SED compared to less luminous objects. It is therefore critical to use SED templates constructed exclusively from very bright quasars samples when dealing with particularly luminous sources.Comment: Accepted for publication in A&A. 20 pages, 15 figure

    The Role of Matrix Metalloproteinase in Human Body Pathologies

    No full text
    Matrix metalloproteinases (MMPs) are a family of proteolytic zinc-containing enzymes involved in physiological as well as in pathological processes in the human organism. MMPs play a key role in the remodeling of the extracellular matrix. Such a process may occur because of tissue homeostasis, morphogenesis, and tissue repair. However, remodeling could also be a part of many pathological states such as arthritis, cardiovascular diseases, neurodegenerative diseases, or impaired development in congenital anomalies. This book overviews the role of MMPs in different pathologies affecting the human body
    • …
    corecore