71 research outputs found

    Apparent N Balance in Organic and Conventional Low Input Cropping Systems

    Get PDF
    The determination of nutrient surplus is one of the indicators of potential N losses from the agricultural system to the environment. An experiment was started in 1998 in Central Italy to evaluate the soil surface N balance of an organic and a conventional low input cropping system over a long term crop rotation. Results at the end of a 6-year crop rotation showed an estimated N surplus in organic system 1.3-2 times higher than in conventional system while N content in the top soil was not different in the two systems, so that organic system should have involved a higher N loss from that soil layer

    Early interspecific interference in the wheat/faba bean (Triticum aestivum/ Vicia faba ssp. minor) and rapeseed/squarrosum clover (Brassica napus var. oleifera/Trifolium squarrosum) intercrops

    Get PDF
    Most of research on intercrops evaluate performances and interference between species on the basis of final yield, while little knowledge is available on the interference in early stages and at the root level, at least for cultivated intercrops. In fact, in the few studies on this subject species are often combined minding at experimental needs ( e.g. common substrate, temperature and water requirements, easy root separation) more than at their actual use in the farm. The present work evaluates interspecific interference during early developmental stages for two intercrops of agricultural interest: soft wheat-faba bean and rapeseed-squarrosum clover. Improving this knowledge would help intercrop growth modelling and rational cultivation. The experiments were carried out on soft wheat ( Triticum aestivum ), faba bean ( Vicia faba var. minor ), rapeseed ( Brassica napus var. oleifera ) and squarrosum clover ( Trifolium squarrosum ), germinated and grown until 32 days after sowing (DAS) as one-species stands or as wheat/faba bean and rapeseed/squarrosum clover intercrops, with different densities and proportions for the two species in each couple. Germination was studied in controlled-temperature chamber, plantlet growth was studied on pots in the greenhouse. During germination no interspecific interference was observed for both wheat/faba bean and rapeseed/squarrosum clover intercrops. During plantlet growth, interspecific interference occurred in both intercrops causing variations in whole plant and root dry matter accumulation. In the wheat/faba bean intercrop each species suffered from the competitive effect of the companion species and faba bean was the dominant species when present in lower proportion than wheat. The unexpectedly high aggressivity of faba bean may be explained either with the greater seed size that could have represented an initial advantage within the short duration of the experiment or with the competition towards wheat for substrate N which is not usual in the open field for a N fixing species. In the rapeseed/squarrosum clover intercrop, rapeseed was facilitated by squarrosum clover, while squarrosum clover suffered from the competitive effect of rapeseed, which was the dominant species. The resource use efficiency of intercrops as compared to that of one-species crops was lower in the wheat/faba bean couple, not much different in the rapeseed/squarrosum clover one. In both couples, the best performance was observed when the ratio of the dominant species was lower than that of the companion species (number of plants in the ratio 1:3)

    An Economic Analysis of the Efficiency and Sustainability of Fertilization Programs at Level of Operational Systems of Soft Wheat in Umbria

    Get PDF
    Abstract This study analyzes the fertilization strategies in the perspective of the efficiency analysis. The analysis is conducted at farm level and framed into the conceptualization of the relationship between the decisional and operational systems (Sebillotte, Allain 1991). The conceptual framework emphasizes the importance of the response function approach, of the sustainability principles ( Pretty, 2008 ) and of the organizational dimensions. Data on soft wheat were collected from FADN system. Data Envelopment Analysis indicates the importance of the operational systems organizational factors in determining the crop efficiency. The evidence suggests to consider the objectives of the fertilization program in the context of the organizational dimensions of the operational system

    mechanical weed control in organic winter wheat

    Get PDF
    Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006-07; exp. 3, 2007-08) in central Italy (42°57' N - 12°22' E, 165 m a.s.l.) in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: 1) spring tine harrowing used at three different application times (1 passage at T1; 2 passages at the time T1; 1 passage at T1 followed by 1 passage at T1 + 14 days) in the crop sowed at narrow (traditional) row spacing (0.15 m) and 2) split-hoeing and finger-weeder, alone and combined at T1, in the crop sowed at wider row spacing (0.30 m). At the time T1 winter wheat was at tillering and weeds were at the cotyledons-2 true leaves growth stage. The experimental design was a split-plot with four replicates. Six weeks after mechanical treatments, weed ground cover (%) was rated visually using the Braun–Blanquet cover-abundance scale; weeds on three squares (0.6 x 0.5 m each one) per plot were collected, counted, weighed, dried in oven at 105 °C to determine weed density and weed above-ground dry biomass. At harvest, wheat ears density, grain yield, weight of 1000 seeds and hectolitre weight were recorded. Total weed flora was quite different in the three experiments. The main weed species were: Polygonum aviculare L. (exp. 1 and 2), Fallopia convolvulus (L.) Á. Löve (exp. 1 and 3), Stachys annua (L.) L. (exp. 1), Anagallis arvensis L. (exp. 2), Papaver rhoeas L. (exp.3), Veronica hederifolia L. (exp. 3). In the winter wheat sowed at narrow rows, 2 passages with spring-tine harrowing at the same time seems to be the best option in order to reconcile a good efficacy with the feasibility of treatment. In wider rows spacing the best weed control was obtained by splithoeing alone or combined with finger-weeder. The grain yield, on average 10% higher in narrow rows, the lower costs and the good selectivity of spring-tine harrowing treatments seems to suggest the adoption of narrow rows spacing in wheat in organic and low-input farming systems

    Yield and apparent dry matter and nitrogen balances for muskmelon in a long-term comparison between an organic and a conventional low input cropping system

    Get PDF
    Nine-year yields and apparent balances of dry matter and nitrogen (N) are reported for muskmelon cultivated in a long-term comparison trial between an organic and a conventional low input system in Central Italy. In every year, yield, above ground biomass and N accumulation of each cash crop, green manure and weeds, and the partitioning between marketable yield and crop residues were determined. Apparent dry matter and nitrogen balances were calculated at the end of each crop cycle by taking into account the amounts of dry matter and ex novo N supplied to the system as green manure legume Ndfa (i.e., an estimate of N derived from the atmosphere via symbiotic fixation) and fertilisers, and those removed with marketable yield. Differences between systems varied across years. On average, organic muskmelon yielded 16% less than the conventional one, while the fruit quality was similar in the two cropping systems. Fruit ripening began one week later and it was more scaled than in the crop grown conventionally. This was the consequence of a slow initial growth of the organic crop, due to inadequate green manure N total supply or timing of N release. Moreover such a wide spaced crop (0.5 plants m–2, in rows 2 m apart) was not efficient in intercepting N released from green manure biomass incorporated broadcast. Compared to the conventional crop management, the organic crop management resulted in much higher organic matter supply to the soil and in higher residual N after harvest. Thus, the choice of cultivating wheat just after melon to prevent postharvest residual N loss appears a key strategy especially in organic systems. Fall-winter green manure crops contributed to the self-sufficiency of the organic system by supplying muskmelon with either N absorbed from the soil or ex novo legume Ndfa

    Does the timing of short-term biowaste compost application affect crop growth and potential nitrate leaching? The case studies of processing tomato and cauliflower under field conditions

    Get PDF
    The feasibility of municipal solid waste compost (MSWC) as a substitute for mineral nitrogen (N) fertiliser was tested for a spring-summer (i.e., processing tomato) and an autumn-winter (i.e., cauliflower) vegetable crop grown in Mediterranean open field conditions. Two different doses (10 and 20 t dm C ha–1) and two distribution timings for each dose (i.e., early application at about nine months before processing tomato transplanting and five months before cauliflower transplanting: C10_early and C20_early; late application at about one month before processing tomato and cauliflower transplanting: C10_late and C20_late) were compared in a two-year field experiment. An unfertilised control and a 100% mineral N fertilisation (MIN, 200 kg N ha–1 for processing tomato and 150 kg N ha–1 for cauliflower) were added to the experiment. The application of MSWC significantly reduced the aboveground DM accumulation compared to the MIN in both crops, and it was inadequate to ensure a high yield for spring-summer and autumn-winter vegetables. However, the timing of compost application seems to play an essential role in reducing the reduction of crop growth due to compost application. In both tomato and cauliflower, when the MSWC was applied a few months earlier than the transplanting (i.e., in the previous summer in tomato and the previous spring in cauliflower), the DM and yield reduction was less apparent than in soil where compost was applied immediately before transplanting. Despite the lowest N-uptake associated with the MSWC application, the N-NO3 concentration in the soil solution was reduced by MSWC. In addition to the amendment effect, compost use may positively impact lowering N leaching risks in the groundwater. Combining the use of MSWC applied early before the crop season with mineral N fertiliser, it is possible to gain high yield, increase soil organic carbon and reduce groundwater contamination risk both in spring-summer and autumn-winter vegetable crops. Highlights- Biowaste compost decreased the aboveground biomass accumulation and yield in processing tomato and cauliflower. - Biowaste compost alone did not meet the N requirement in processing tomato and cauliflower. - Biowaste compost distribution in the summer before the processing tomato growing season alleviated its depressive effect in reducing DM and yield. - Biowaste compost distribution in the spring before the cauliflower growing season alleviated its depressive effect in reducing DM and yield. - Biowaste compost decreased the N-NO3 concentration in soil solution compared to mineral fertilisation with a positive effect in reducing N leaching risks in the groundwater

    Nine-year results on maize and processing tomato cultivation in an organic and in a conventional low input cropping system

    Get PDF
    Nine-year results on yields and apparent balances of organic matter and nitrogen (N) are reported for maize and processing tomato cultivated in a long term comparison trial between an organic and a conventional low-input system in Central Italy. In every year, above ground biomass and N accumulation of each cash crop and green manure, including weeds, and the partitioning between marketable yield and crop residues were determined. Apparent dry matter and nitrogen balances were calculated at the end of each crop cycle by taking into account the amounts of dry matter and ex-novo N supplied to the system as green manure legume Ndfa ( i.e. an estimate of N derived from the atmosphere via symbiotic fixation) and fertilizers, and those removed with marketable yield. Processing tomato complied with organic cultivation better than maize. As compared to the conventional crop cultivation, organic tomato provided similar yields, used supplied N more efficiently and left lower residual N after harvest, with lower related risks of pollution. Organic maize yielded less than conventional one. The main limitation for organic maize was the low N availability during initial growth phases, due to either low N supply or low rate of N release from incorporated green manure biomass. In both organic and conventional cultivation the system sustainability could be improved by an appropriate crop rotation: wheat in fall winter likely prevented leaching loss of mineral N in both systems; green manure crops in the organic system allowed to either trap and recycle soil mineral N or supply ex novo legume Ndfa to the soil, with benefits in mitigation of N pollution and improvement in self-sufficiency of the system

    A Semi Rigid Novel Hydroxamate AMPED-Based Ligand for 89Zr PET Imaging

    Get PDF
    In this work, we designed, developed, characterized, and investigated a new chelator and its bifunctional derivative for 89Zr labeling and PET-imaging. In a preliminary study, we synthesized two hexadentate chelators named AAZTHAS and AAZTHAG, based on the seven-membered heterocycle AMPED (6-amino-6-methylperhydro-1,4-diazepine) with the aim to increase the rigidity of the 89Zr complex by using N-methyl-N-(hydroxy)succinamide or N-methyl-N-(hydroxy)glutaramide pendant arms attached to the cyclic structure. N-methylhydroxamate groups are the donor groups chosen to efficiently coordinate 89Zr. After in vitro stability tests, we selected the chelator with longer arms, AAZTHAG, as the best complexing agent for 89Zr presenting a stability of 86.4 5.5% in human serum (HS) for at least 72 h. Small animal PET/CT static scans acquired at different time points (up to 24 h) and ex vivo organ distribution studies were then carried out in healthy nude mice (n = 3) to investigate the stability and biodistribution in vivo of this new 89Zr-based complex. High stability in vivo, with low accumulation of free 89Zr in bones and kidneys, was measured. Furthermore, an activated ester functionalized version of AAZTHAG was synthesized to allow the conjugation with biomolecules such as antibodies. The bifunctional chelator was then conjugated to the human anti-HER2 monoclonal antibody Trastuzumab (Tz) as a proof of principle test of conjugation to biologically active molecules. The final 89Zr labeled compound was characterized via radio-HPLC and SDS-PAGE followed by autoradiography, and its stability in different solutions was assessed for at least 4 days

    Optimising the use of plastic protective covers in field grown melon on a farm scale

    Get PDF
    This in-farm research study was aimed at evaluating new strategies in the use of plastic protective covers in field grown melon in order to expand the production period and reduce costs. Four experiments were set up in 2010 and repeated in 2011 in Central Italy, in an inland region with a temperate climate. We evaluated: i) the use of high tunnels for two growing cycles per year, i.e. for very early and very late production (target transplanting in late winter and mid-summer, respectively), for either one year or two consecutive years, and the use of grafted plants in the second year as an alternative to normal plants to prevent soil born diseases; ii) the use of ethylene-vinyl-acetate film low tunnels alone or combined with non-woven floating row covers for transplanting in early spring; iii) the use of non-woven low tunnels for transplanting in mid-spring; iv) the use of biodegradable and conventional polyethylene ground mulch films, both in the presence of nonwoven low tunnels. As far as the non-woven cover is concerned, we adopted the strategy of removing later with respect to usual practices, i.e. ten days after the onset of first pistillate flowers. This was based on the evidence that covers hamper honeybee circulation, which may be exploited on a farm-scale to delay pollination until an adequate number of pistillate flowers set, in order to shorten scaled fruit ripening and harvest. Our results demonstrate that high tunnels may be used for at least four consecutive melon growing cycles (early and late productions for two years) with good off-season yields and no appreciable drawbacks in terms of disease scale-up, irrespective of the use of normal or grafted plants. The non-woven low tunnel was effective in hampering honeybee circulation and its delayed removal allowed the harvest period to be halved, a more uniform fruit size to be obtained, and labour productivity of harvest to be increased. This had positive implications on the management of irrigation and chemical disease control close to the harvest period, and on the management of harvest and post-harvest operation schedules, including fruit processing, packaging and delivery to markets. In the presence of a non-woven low tunnel, there was no substantial difference in the biodegradable mulch compared to other mulches in terms of effects on harvest dates, yield and weed control, so that its use can be cost-effective and convenient provided that costs are not higher than those for traditional polyethylene films and their usage/disposal
    • 

    corecore