140 research outputs found

    Nonlinear vibration of functionally graded cylindrical shells: effect of constituent volume fractions and configurations

    Get PDF
    In this paper, the nonlinear vibration of functionally graded (FGM) cylindrical shells under different constituent volume fractions and configurations is analyzed. The Sanders-Koiter theory is applied to model nonlinear dynamics of the system in the case of finite amplitude of vibration. The shell deformation is described in terms of longitudinal, circumferential and radial displacement fields. Simply supported boundary conditions are considered. Displacement fields are expanded by means of a double mixed series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. Both driven and companion modes are also considered, allowing for the travelling-wave response of the shell. The functionally graded material considered is made of stainless steel and nickel, properties are graded in the thickness direction according to a real volume fraction power-law distribution. In the nonlinear model, shells are subjected to an external radial excitation. Nonlinear vibrations due to large amplitude of excitation are considered. Specific modes are selected in the modal expansions; a dynamical nonlinear system is then obtained. Lagrange equations are used to reduce nonlinear partial differential equations to a set of ordinary differential equations, from the potential and kinetic energies, and the virtual work of the external forces. Different geometries are analyzed; amplitude-frequency curves are obtained. Convergence tests are carried out considering a different number of asymmetric and axisymmetric modes. The present model is validated in linear field (natural frequencies) by means of data present in the literature

    Nonlinear vibrations of functionally graded cylindrical shells: Effect of companion mode participation

    Get PDF
    In this paper, the nonlinear vibrations of functionally graded (FGM) circular cylindrical shells are analyzed. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration. The shell deformation is described in terms of longitudinal, circumferential and radial displacement fields. Simply supported boundary conditions are considered. The displacement fields are expanded by means of a double mixed series based on Chebyshev orthogonal polynomials for the longitudinal variable and harmonic functions for the circumferential variable. Both driven and companion modes are considered, allowing for the travelling-wave response of the shell. Numerical analyses are carried out in order to characterize the nonlinear response when the shell is subjected to an harmonic external load. A convergence analysis is carried out to obtain the correct number of axisymmetric and asymmetric modes describing the actual nonlinear behavior of the shells. The effect of the geometry on the nonlinear vibrations of the shells is analyzed, and a comparison of nonlinear amplitude-frequency curves of cylindrical shells with different geometries is carried out. The influence of the companion mode participation on the nonlinear response of the shells is analyzed; frequency-response curves with companion mode participation (i.e. the actual response of the shell) are obtained. The present model is validated in the linear field (natural frequencies) by means of data present in the literature

    A Ruby API to query the Ensembl database for genomic features

    Get PDF
    Summary: The Ensembl database makes genomic features available via its Genome Browser. It is also possible to access the underlying data through a Perl API for advanced querying. We have developed a full-featured Ruby API to the Ensembl databases, providing the same functionality as the Perl interface with additional features. A single Ruby API is used to access different releases of the Ensembl databases and is also able to query multi-species databases

    Nonlinear vibrations of functionally graded cylindrical shells: Effect of the geometry

    Get PDF
    In this paper, the effect of the geometry on the nonlinear vibrations of functionally graded (FGM) cylindrical shells is analyzed. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration. The shell deformation is described in terms of longitudinal, circumferential and radial displacement fields. Simply supported boundary conditions are considered. The displacement fields are expanded by means of a double mixed series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. In the linear analysis, after spatial discretization, mass and stiff matrices are computed, natural frequencies and mode shapes of the shell are obtained. In the nonlinear analysis, the three displacement fields are re-expanded by using approximate eigenfunctions obtained by the linear analysis; specific modes are selected. The Lagrange equations reduce nonlinear partial differential equations to a set of ordinary differential equations. Numerical analyses are carried out in order to characterize the nonlinear response of the shell. A convergence analysis is carried out to determine the correct number of the modes to be used. The analysis is focused on determining the nonlinear character of the response as the geometry of the shell varies

    Effect of the geometry on the nonlinear vibrations of functionally graded cylindrical shells

    Get PDF
    In this paper, the effect of the geometry on the nonlinear vibrations of functionally graded (FGM) cylindrical shells is analyzed. The Sanders-Koiter theory is applied to model nonlinear dynamics of the system in the case of finite amplitude of vibration. Shell deformation is described in terms of longitudinal, circumferential and radial displacement fields; the theory considers geometric nonlinearities due to the large amplitude of vibration. Simply supported boundary conditions are considered. The displacement fields are expanded by means of a double mixed series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. Both driven and companion modes are considered, allowing for the travelling-wave response of the shell. The functionally graded material is made of a uniform distribution of stainless steel and nickel, the material properties are graded in the thickness direction, according to a volume fraction power-law distribution.The first step of the procedure is the linear analysis, i.e. after spatial discretization mass and stiff matrices are computed and natural frequencies and mode shapes of the shell are obtained, the latter are represented by analytical continuous functions defined over all the shell domain. In the nonlinear model, the shell is subjected to an external harmonic radial excitation, close to the resonance of a shell mode, it induces nonlinear behaviors due to large amplitude of vibration. The three displacement fields are re-expanded by using approximate eigenfunctions, which were obtained by the linear analysis; specific modes are selected. An energy approach based on the Lagrange equations is considered, in order to reduce the nonlinear partial differential equations to a set of ordinary differential equations.Numerical analyses are carried out in order characterize the nonlinear response, considering different geometries and material distribution. A convergence analysis is carried out in order to determine the correct number of the modes to be used; the role of the axisymmetric and asymmetric modes carefully analyzed. The analysis is focused on determining the nonlinear character of the response as the geometry (thickness, radius, length) and material properties (power-law exponent and configurations of the constituent materials) vary; in particular, the effect of the constituent volume fractions and the configurations of the constituent materials on the natural frequencies and nonlinear response are studied.Results are validated using data available in literature, i.e. linear natural frequencies

    Nonlinear vibrations of functionally graded circular cylindrical shells

    Get PDF
    In this paper, the effect of the geometry on the nonlinear vibrations of functionally graded cy- lindrical shells is analyzed. The Sanders-Koiter theory is applied to model nonlinear dynamics of the system in the case of finite amplitude of vibration. Shell deformation is described in terms of longitudinal, circumferential and radial displacement fields. Simply supported boundary conditions are considered. Numerical analyses are carried out in order to characterize the nonlinear response when the shell is subjected to an harmonic external load; different geometries and material distribu- tions are considered. A convergence analysis is carried out in order to determine the correct number of the modes to be used; the role of the axisymmetric and asymmetric modes is carefully analyzed. The analysis is focused on determining the nonlinear character of the response as the geometry (thickness, radius, length) and material properties (power-law exponent N and configurations of the constituent materials) vary. The effect of the constituent volume fractions and the configurations of the constituent materials on the natural frequencies and nonlinear response are studied

    Effect of the boundary conditions on the vibrations of functionally graded shells

    Get PDF
    In this paper, the effect of the boundary conditions on the nonlinear vibration of functionally graded circular cylindrical shells is analyzed. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration. The shell deformation is described in terms of longitudinal, circumferential and radial displacement fields. Numerical analyses are carried out in order to characterize the nonlinear response when the shell is subjected to an harmonic external load; different geometries and material distributions are considered. A convergence analysis is carried out in order to determine the correct number of the modes to be used; the role of the axisymmetric and asymmetric modes is carefully analyzed. The effect of the geometry on the nonlinear response is investigated; i.e. thickness and radius are varied; simply supported, clamped-clamped and free-free shells are considered. The effect of the constituent volume fractions and the configurations of the constituent materials on the natural frequencies and nonlinear response are studied

    Nonlinear dynamics of Single-Walled Carbon Nanotubes

    Get PDF
    The nonlinear vibrations of Single-Walled Carbon Nanotubes are analysed. The Sanders-Koiter elastic shell theory is applied in order to obtain the elastic strain energy and kinetic energy. The carbon nanotube deformation is described in terms of longitudinal, circumferential and radial displacement fields. The theory considers geometric nonlinearities due to large amplitude of vibration. The displacement fields are expanded by means of a double series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. The Rayleigh-Ritz method is applied to obtain approximate natural frequencies and mode shapes. Free boundary conditions are considered. In the nonlinear analysis, the three displacement fields are re-expanded by using approximate eigenfunctions. An energy approach based on the Lagrange equations is considered in order to obtain a set of nonlinear ordinary differential equations. The total energy distribution of the shell is studied by considering combinations of different vibration modes. The effect of the conjugate modes is analysed

    Nonlinear Dynamics of Single-Walled Carbon Nanotubes

    Get PDF
    The nonlinear dynamics of Single-Walled Carbon Nanotubes is studied. The Sanders-Koiter elastic shell theory is applied. The carbon nanotube deformation is described in terms of longitudinal, circumferential and radial displacement fields. Free boundary conditions are considered. The total energy distribution of the system is studied by considering the combinations of different vibration modes. The effect of the companion mode participation on the energy distribution is analysed

    Nonlinear vibrations and energy distribution of Single-Walled Carbon Nanotubes

    Get PDF
    The nonlinear vibrations of Single-Walled Carbon Nanotubes are analysed. The Sanders-Koiter elastic shell theory is applied in order to obtain the elastic strain energy and kinetic energy. The carbon nanotube deformation is described in terms of longitudinal, circumferential and radial displacement fields. The theory considers geometric nonlinearities due to large amplitude of vibration. The displacement fields are expanded by means of a double series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. The Rayleigh-Ritz method is applied in order to obtain approximate natural frequencies and mode shapes. Free boundary conditions are considered. In the nonlinear analysis, the three displacement fields are re-expanded by using approximate eigenfunctions. An energy approach based on the Lagrange equations is considered in order to obtain a set of nonlinear ordinary differential equations. The energy distribution of the system is studied by considering combinations of different vibration modes. The effect of the conjugate modes participation on the energy distribution is analysed
    corecore