35 research outputs found

    mTOR Modulates Methamphetamine-Induced Toxicity through Cell Clearing Systems

    Get PDF
    Methamphetamine (METH) is abused worldwide, and it represents a threat for public health. METH exposure induces a variety of detrimental effects. In fact, METH produces a number of oxidative species, which lead to lipid peroxidation, protein misfolding, and nuclear damage. Cell clearing pathways such as ubiquitin-proteasome (UP) and autophagy (ATG) are involved in METH-induced oxidative damage. Although these pathways were traditionally considered to operate as separate metabolic systems, recent studies demonstrate their interconnection at the functional and biochemical level. Very recently, the convergence between UP and ATG was evidenced within a single organelle named autophagoproteasome (APP), which is suppressed by mTOR activation. In the present research study, the occurrence of APP during METH toxicity was analyzed. In fact, coimmunoprecipitation indicates a binding between LC3 and P20S particles, which also recruit p62 and alpha-synuclein. The amount of METH-induced toxicity correlates with APP levels. Specific markers for ATG and UP, such as LC3 and P20S in the cytosol, and within METH-induced vacuoles, were measured at different doses and time intervals following METH administration either alone or combined with mTOR modulators. Western blotting, coimmunoprecipitation, light microscopy, confocal microscopy, plain transmission electron microscopy, and immunogold staining were used to document the effects of mTOR modulation on METH toxicity and the merging of UP with ATG markers within APPs. METH-induced cell death is prevented by mTOR inhibition, while it is worsened by mTOR activation, which correlates with the amount of autophagoproteasomes. The present data, which apply to METH toxicity, are also relevant to provide a novel insight into cell clearing pathways to counteract several kinds of oxidative damage

    LDOC1 expression in fibroblasts of patients with Down syndrome

    Get PDF
    Abstract Down syndrome (DS) is characterised by intellectual disability and is caused by trisomy 21. Apoptosis is a programmed cell death process and is involved in neurodegenerative diseases such as Alzheimer. People with DS can develop some traits of Alzheimer disease at an earlier age than subjects without trisomy 21. The leucine zipper, down regulated in cancer 1 (LDOC1) appears to be involved in the apoptotic pathways. The aim of the present work was to detect the presence of intracellular synthesis of LDOC1 protein and LDOC1 mRNA in fibroblast cultures from DS subjects. The western blot shows the presence of LDOC1 protein in fibroblasts of DS subjects but no evidence of LDOC1 protein in fibroblasts of normal subjects. LDOC1 gene mRNA expression is increased in fibroblasts from DS subjects compared to fibroblasts from normal subjects. The data obtained from this study strengthen the hypothesis that the over-expression of LDOC1 gene could play a role in determining the phenotype of individuals with DS but does not exclude that this results from apoptotic mechanisms

    MPTP-induced Parkinsonism is associated with damage to Leydig cells and testosterone loss

    No full text
    Genital dysfunction and testosterone deficiency occur frequently in Parkinson's disease and represent a typical non-motor symptom of the disorder. Despite that, to our knowledge no study investigated whether at experimental level this can be reproduced with classic Parkinsonism-inducing neurotoxins. In this study we evaluated the effects produced in the testis following administration of the Parkinsonism-inducing neurotoxin 1-methyl, 4-phenyl, 1,2,3,6-tetrahydropyridine in mice. At 7 days following treatment, in the presence of a severe nigrostriatal dopamine depletion, we found a marked decrease in testosterone plasma levels in 1-methyl, 4-phenyl, 1,2,3,6-tetrahydropyridine-treated mice. Such testosterone loss occurred concomitantly with loss of Leydig cells and the presence of altered morphology in the interstitium with severe mitochondrial degeneration in spared Leydig cells. The loss of Leydig cells was accompanied by a marked decrease in TH immunohistochemistry and TH protein in the interstitium. This was accompanied by a significant decrease in norepinephrine levels in the testis. These effects shed novel light to understand genital dysfunction and testosterone deficiency in Parkinsonism, while offering a new experimental model to reproduce genital dysfunction in Parkinson's disease

    Ultrastructural and ultracytochemical study of the human nasal respiratory epithelium in vasomotor rhinitis

    No full text
    OBJECTIVES: Several pieces of evidence have suggested that nitric oxide (NO) fulfills important functions in the respiratory mucosa, under both normal and pathological conditions. This study was performed to investigate the role of NO in the nasal respiratory epithelium of patients affected by vasomotor rhinitis. The structure and ultrastructure of the epithelium were also examined. MATERIAL AND METHODS: The localization of NO synthase activity was determined by means of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase ultracytochemistry. Nasal mucosa was obtained from patients who had undergone surgical therapy for reduction of the inferior turbinate. RESULTS: Examination of hematoxylin-eosin-stained sections revealed that most of the nasal mucosa covering the surgical samples was characterized by severe epithelial damage. The ultrastructural study confirmed the light microscopic observations. Ciliary loss, absence of the intercellular junctions and distension of the intercellular spaces were found in the damaged epithelium. The basement membrane was frequently interrupted. Some epithelial cells were identified as basal cells. Other cells of the damaged epithelium were probably involuted ciliated and goblet cells. The ultracytochemical study showed that the basal cells were NADPH-diaphorase-negative in healthy subjects and strongly NADPH-diaphorase-positive in subjects with vasomotor rhinitis. CONCLUSIONS: It is suggested that NO has cytotoxic effects and causes inhibition of mitotic activity in the basal cells, leading to epithelial disruption and breakdown of the protective functions of the epithelium
    corecore