48 research outputs found

    Evaluation of algorithms for photon depth of interaction estimation for the TRIMAGE PET component

    Get PDF
    The TRIMAGE consortium aims to develop a multimodal PET/MR/EEG brain scanner dedicated to the early diagnosis of schizophrenia and other mental health disorders. The PET component features a full ring made of 18 detectors, each one consisting of twelve 8x8 Silicon PhotoMultipliers (SiPMs) tiles coupled to two segmented LYSO crystal matrices with staggered layers. In each module, the crystals belonging to the bottom layer are coupled one to one to the SiPMs, while each crystal of the top layer is coupled to four crystals of the bottom layer. This configuration allows to increase the crystal thickness while reducing the depth of interaction uncertainty, as photons interacting in different layers are expected to produce different light patterns on the SiPMs. The PET scanner will implement the pixel/layer identification on a front-end FPGA. This will allow increasing the effective bandwidth, setting at the same time restrictions on the complexity of the algorithms to be implemented. In this work two algorithms whose implementation is feasible directly on an FPGA are presented and evaluated. The first algorithm implements a method based on adaptive thresholding, while the other uses a linear Support Vector Machine (SVM) trained to distinguish the light pattern coming from two different layers. The validation of the algorithm performance is carried out by using simulated data generated with the GAMOS Monte Carlo. The obtained results show that the achieved accuracy in layer and pixel identification is above the 90% for both the proposed approaches

    Studio di un urto anelastico: una proposta per le Scuole Secondarie di II grado nell'ambito del progetto "Lab2Go"

    Get PDF
    When a free falling ping-pong ball collides on a horizontal surface, it loses kinetic energy. The ratio between the height reached by the ball after the collision and the initial height is called restitution coefficient. A method to measure it by using a home-made cathetometer was proposed during the Olimpiadi di Fisica 2018. In this paper we show how to measure it also by using the PhyPhox app and Arduino boar

    Particle beam microstructure reconstruction and coincidence discrimination in PET monitoring for hadron therapy

    Get PDF
    Positron emission tomography is one of the most mature techniques for monitoring the particles range in hadron therapy, aiming to reduce treatment uncertainties and therefore the extent of safety margins in the treatment plan. In-beam PET monitoring has been already performed using inter-spill and post-irradiation data, i.e., while the particle beam is off or paused. The full beam acquisition procedure is commonly discarded because the particle spills abruptly increase the random coincidence rates and therefore the image noise. This is because random coincidences cannot be separated by annihilation photons originating from radioactive decays and cannot be corrected with standard random coincidence techniques due to the time correlation of the beam-induced background with the ion beam microstructure. The aim of this paper is to provide a new method to recover in-spill data to improve the images obtained with full-beam PET acquisitions. This is done by estimating the temporal microstructure of the beam and thus selecting input PET events that are less likely to be random ones. The PET detector we used was the one developed within the INSIDE project and tested at the CNAO synchrotron-based facility. The data were taken on a PMMA phantom irradiated with 72 MeV proton pencil beams. The obtained results confirm the possibility of improving the acquired PET data without any external signal coming from the synchrotron or ad-hoc detectors

    Online proton therapy monitoring: Clinical test of a Silicon-photodetector-based in-beam PET

    Get PDF
    Particle therapy exploits the energy deposition pattern of hadron beams. The narrow Bragg Peak at the end of range is a major advantage but range uncertainties can cause severe damage and require online verification to maximise the effectiveness in clinics. In-beam Positron Emission Tomography (PET) is a non-invasive, promising in-vivo technique, which consists in the measurement of the β+ activity induced by beam-tissue interactions during treatment, and presents the highest correlation of the measured activity distribution with the deposited dose, since it is not much influenced by biological washout. Here we report the first clinical results obtained with a state-of-the-art in-beam PET scanner, with on-the-fly reconstruction of the activity distribution during irradiation. An automated time-resolved quantitative analysis was tested on a lacrimal gland carcinoma case, monitored during two consecutive treatment sessions. The 3D activity map was reconstructed every 10 s, with an average delay between beam delivery and image availability of about 6 s. The correlation coefficient of 3D activity maps for the two sessions (above 0.9 after 120 s) and the range agreement (within 1 mm) prove the suitability of in-beam PET for online range verification during treatment, a crucial step towards adaptive strategies in particle therapy

    Il progetto Lab2Go per la diffusione della pratica laboratoriale nelle Scuole Secondarie di II grado

    Get PDF
    Even if laboratory practice is essential for all scientific branches of knowledge, it is often neglected at High School, due to lack of time and/or resources. To establish a closer contact between school and experimental sciences, Sapienza Università di Roma and the Istituto Nazionale di Fisica Nucleare (INFN) launched the Lab2Go project, with the goal of spreading laboratory practice among students and teachers in high schools

    Localization of anatomical changes in patients during proton therapy with in-beam PET monitoring: a voxel-based morphometry approach exploiting Monte Carlo simulations

    Get PDF
    Purpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment. Methods: We selected a patient treated for squamous cell carcinoma (SCC) with proton therapy, to perform multiple Monte Carlo (MC) simulations of the expected PET signal at the start of treatment, and to study how the PET signal may change along the treatment course due to morphological changes. We performed voxel-wise two-tailed statistical tests of the simulated PET images, resembling the voxel-based morphometry (VBM) method commonly used in neuroimaging data analysis, to locate regions with significant morphological changes and to quantify the change. Results: The VBM resembling method has been successfully applied to the simulated in-beam PET images, despite the fact that such images suffer from image artifacts and limited statistics. Three dimensional probability maps were obtained, that allowed to identify interfractional morphological changes and to visualize them superimposed on the computed tomography (CT) scan. In particular, the characteristic color patterns resulting from the two-tailed statistical tests lend themselves to trigger alarms in case of morphological changes along the course of treatment. Conclusions: The statistical method presented in this work is a promising method to apply to PET monitoring data to reveal interfractional morphological changes in patients, occurring over the course of treatment. Based on simulated in-beam PET treatment monitoring images, we showed that with our method it was possible to correctly identify the regions that changed. Moreover we could quantify the changes, and visualize them superimposed on the CT scan. The proposed method can possibly help clinical personnel in the replanning procedure in adaptive proton therapy treatments

    In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO

    Get PDF
    Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam's Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan

    Monitoring Carbon Ion Beams Transverse Position Detecting Charged Secondary Fragments: Results From Patient Treatment Performed at CNAO

    Get PDF
    Particle therapy in which deep seated tumours are treated using 12C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing. The 12C ions beams range could only be monitored by looking at the secondary radiation emitted by the primary beam interaction with the patient tissues and no technical solution capable of the needed precision has been adopted in the clinical centres yet. The detection of charged secondary fragments, mainly protons, emitted by the patient is a promising approach, and is currently being explored in clinical trials at CNAO. Charged particles are easy to detect and can be back-tracked to the emission point with high efficiency in an almost background-free environment. These fragments are the product of projectiles fragmentation, and are hence mainly produced along the beam path inside the patient. This experimental signature can be used to monitor the beam position in the plane orthogonal to its flight direction, providing an online feedback to the beam transverse position monitor chambers used in the clinical centres. This information could be used to cross-check, validate and calibrate, whenever needed, the information provided by the ion chambers already implemented in most clinical centres as beam control detectors. In this paper we study the feasibility of such strategy in the clinical routine, analysing the data collected during the clinical trial performed at the CNAO facility on patients treated using 12C ions and monitored using the Dose Profiler (DP) detector developed within the INSIDE project. On the basis of the data collected monitoring three patients, the technique potential and limitations will be discussed
    corecore