2,149 research outputs found
Convolutive superposition for multicarrier cognitive radio systems
Recently, we proposed a spectrum-sharing paradigm for single-carrier
cognitive radio (CR) networks, where a secondary user (SU) is able to maintain
or even improve the performance of a primary user (PU) transmission, while also
obtaining a low-data rate channel for its own communication. According to such
a scheme, a simple multiplication is used to superimpose one SU symbol on a
block of multiple PU symbols.The scope of this paper is to extend such a
paradigm to a multicarrier CR network, where the PU employs an orthogonal
frequency-division multiplexing (OFDM) modulation scheme. To improve its
achievable data rate, besides transmitting over the subcarriers unused by the
PU, the SU is also allowed to transmit multiple block-precoded symbols in
parallel over the OFDM subcarriers used by the primary system. Specifically,
the SU convolves its block-precoded symbols with the received PU data in the
time-domain, which gives rise to the term convolutive superposition. An
information-theoretic analysis of the proposed scheme is developed, which
considers different amounts of network state information at the secondary
transmitter, as well as different precoding strategies for the SU. Extensive
simulations illustrate the merits of our analysis and designs, in comparison
with conventional CR schemes, by considering as performance indicators the
ergodic capacity of the considered systems.Comment: 29 pages, 8 figure
Equalization Techniques of Control and Non-Payload Communication Links for Unmanned Aerial Vehicles
In the next years, several new applications involving unmanned aerial vehicles (UAVs) for public and commercial uses are envisaged. In such developments, since UAVs are expected to operate within the public airspace, a key issue is the design of reliable control and non-payload communication (CNPC) links connecting the ground control station to the UAV. At the physical layer, CNPC design must cope with time- and frequency-selectivity (so-called double selectivity) of the wireless channel, due to lowaltitude operation and flight dynamics of the UAV. In this paper, we consider the transmission of continuous phase modulated (CPM) signals for UAV CNPC links operating over doubly-selective channels. Leveraging on the Laurent representation for a CPM signal, we design a two-stage receiver: the first one is a linear time-varying (LTV) equalizer, synthesized under either the zero-forcing (ZF) or minimum mean-square error (MMSE) criterion; the second one recovers the transmitted symbols from the pseudo-symbols of the Laurent representation in a simple recursive manner. In addition to LTV-ZF and LTV-MMSE equalizers, their widely-linear versions are also developed, to take into account the possible noncircular features of the CPM signal. Moreover, relying on a basis expansion model (BEM) of the doubly-selective channel, we derive frequency-shift versions of the proposed equalizers, by discussing their complexity issues and proposing simplified implementations. Monte Carlo numerical simulations show that the proposed receiving structures are able to satisfactorily equalize the doubly-selective channel in typical UAV scenarios
Realisation and characterisation of Cu-based references for neutron imaging calibration purposes and first results
The long-term purpose of this study is to assess the capabilities of the new Neutron Imaging beamline developed at the LENA facility of Pavia (Italy) for the characterisation of bronze artefacts. In this preliminary work, a set of Cu-based reference alloys has been produced and analysed in order to test and calibrate the facility. The first step involved the production of Cu-based alloys with chemical composition and microstructure similar to ancient artefacts. The chemical composition of the reference alloys was analysed by Optical Emission Spectroscopy. Secondly, some samples were artificially patinated with different chemical treatments obtaining an artificial corrosion products layer comparable to natural corrosion. X-Ray Diffraction, Scanning Electron Microscopy and Raman Spectroscopy have been used to characterise the corrosion patina. The main corrosion products on sulphate-induced patina are cuprite and brochantite, whereas atacamite and clinoatacamite were detected on chloride-induced patinas. Finally, preliminary Neutron Imaging measurements were performed on a first set of coated and uncoated specimens in order to try to correlate the neutrons attenuation coefficients with the chemical compositions with promising results
FeelHippo: a low-cost autonomous underwater vehicle for subsea monitoring and inspection
The paper describes the development and the main characteristics of a low-cost Unmanned Underwater Vehicles (UUV) built by the Mechatronics and Dynamic Modelling Laboratory (MDM Lab) of the University of Florence. This vehicle is named FeelHippo, and it is an Autonomous Underwater Vehicle (AUV) purposely developed to participate to the 2013 edition of the Student Autonomous Underwater Vehicle Challenge-Europe (SAUC-e, http://sauc-europe.org/) organized by the NATO-STO Centre for Maritime Research and Experimentation (CMRE), La Spezia, Italy. SAUC-e 2013 has been a good test field for the preliminary testing of the AUV capabilities and FeelHippo ranked third in the competition. In the paper some experimental results related to the development of a low-cost vehicle localization system, suitable inside an environment a priori known, are given and discussed
Fusing Acoustic Ranges and Inertial Measurements in AUV Navigation: the Typhoon AUV at CommsNet13 Sea Trial
The paper presents some experimental results of autonomous underwater navigation, based on the fusion of acoustic and inertial measurements. The work is in the framework of the Thesaurus project, funded by the Tuscany Region, aiming at developing techniques for systematic exploration of marine areas of archaeological interest through a team of Autonomous Underwater Vehicles (AUVs). The test was carried out with one Typhoon vehicle, a 300m depth rated AUV with acoustic communication capabilities, during the CommsNet13 experiment, organized and scientifically coordinated by the NATO S&T Org. Ctr. for Maritime Research and Experimentation (CMRE, formerly NURC), with the participation of several research institutions. The fusion algorithm is formally casted into an optimal stochastic filtering problem, where the rough estimation of the vehicle position, velocity and attitude, are refined by using the depth measurement, the relative measurements available on the acoustic channel and the vehicle surge speed
- …