248 research outputs found

    MicroRNA profiling in sera of patients with type 2 diabetes mellitus reveals an upregulation of miR-31 expression in subjects with microvascular complications

    Get PDF
    Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycaemia due to a combination of resistance to insulin action and an inadequate compensatory insulin secretory response. Chronic hyperglycemia is associated with long-term micro- and macrovascular complications leading to dysfunction of several organs including kidney, heart, eye and nervous system. Early identification of chronic diabetic complications is necessary in order to prevent dysfunction and failure of these different organs. MicroRNAs (or miRNAs) are small endogenous RNAs, which negatively regulate gene expression. Recently, it has been demonstrated that miRNAs can be secreted by cells, thus being detectable in serum and in other biological fluids. Circulating microRNAs have been proposed as possible biomarkers of several diseases. Here, we performed a miRNAs expression profiling in the sera of T2D patients with or without vascular complications in order to find specific biomarkers to characterize T2D complications. We analyzed the expression of 384 microRNAs in serum pools from 3 groups of T2D patients: 12 T2D patients without any chronic complications, 12 T2D patients with macrovascular complications and 12 with microvascular complications. We found 223 miRNAs expressed in T2D,224 inT2D with microvascular and221 inT2D with macrovascular complications. Among expressed microRNAs, 45 resulted upregulated and 23 downregulated in microvascular patients sera, while 13 upregulated and 41 downregulated in macrovascular T2D patients compared to those without complications. We focused and validated microRNA miR-31 expression in single sera from each group, which resulted significantly upregulated in patients with microvascular complications and may be indeed related to the presence of microangiopathy. In conclusion, our study has identified miR-31 as a promising biomarker for diabetic microvascular complications; further prospective studies in the clinical setting are however required to establish the real utility of measuring serum circulating levels of this microRNA

    La prevenzione del diabete mellito di tipo 1

    Get PDF
    Il trattamento del diabete di tipo 1 (DM1) prevede la somministrazione di insulina che tuttavia non rappresenta, com’è noto, una vera e propria “cura” per questa malattia. Negli ultimi decenni stiamo assistendo allo sviluppo di strategie preventive per il DM1 articolate su tre livelli: una prevenzione primaria finalizzata a prevenire lo sviluppo del processo autoimmune responsabile della distruzione β-cellulare che caratterizza la malattia; una prevenzione secondaria per arrestare il processo autoimmunitario e impedire l’esordio clinico del diabete; una prevenzione terziaria per preservare la massa β-cellulare residua e per ridurre il rischio di sviluppo delle complicanze croniche. Fra i molteplici approcci terapeutici sviluppati per impedire, ritardare o arrestare la distruzione β-cellulare l’immunoterapia, in particolare, è stata ed è tutt’oggi oggetto di innumerevoli ricerche. I risultati sono tutt’altro che semplici da raggiungere, in quanto i meccanismi eziopatogenetici alla base del DM1 sono complessi e non ancora del tutto noti. Per il raggiungimento di un’efficacia preventiva è importante, inoltre, tenere in considerazione l’eterogeneità del DM1, la quale indubbiamente ha influenzato i risultati dei trattamenti finora sperimentati, così come validare nuovi biomarcatori che ci permettano di selezionare al meglio i pazienti da indirizzare a un determinato trattamento

    Circulating MicroRNAs in Elderly Type 2 Diabetic Patients

    Get PDF
    The circulating microRNAs (miRNAs) associated with type 2 diabetes (T2D) in elderly patients are still being defined. To identify novel miRNA biomarker candidates for monitoring responses to sitagliptin in such patients, we prospectively studied 40 T2D patients (age > 65) with HbA1c levels of 7.5–9.0% on metformin. After collection of baseline blood samples (t0), the dipeptidyl peptidase-IV (DPP-IV) inhibitor (DPP-IVi) sitagliptin was added to the metformin regimen, and patients were followed for 15 months. Patients with HbA1c0.5% after 3 and 15 months of therapy were classified as “responders” (group R, n = 34); all others were classified as “nonresponders” (group NR, n = 6). Circulating miRNA profiling was performed on plasma collected in each group before and after 15 months of therapy (t0 and t15). Intra- and intergroup comparison of miRNA profiles pinpointed three miRNAs that correlated with responses to sitagliptin: miR-378, which is a candidate biomarker of resistance to this DPP-IVi, and miR-126-3p and miR-223, which are associated with positive responses to the drug. The translational implications are as immediate as evident, with the possibility to develop noninvasive diagnostic tools to predict drug response and development of chronic complications

    Beyond Glycemic Control in Diabetes Mellitus: Effects of Incretin-Based Therapies on Bone Metabolism

    Get PDF
    Diabetes mellitus (DM) and osteoporosis (OP) are common disorders with a significant health burden, and an increase in fracture risk has been described both in type 1 (T1DM) and in type 2 (T2DM) diabetes. The pathogenic mechanisms of impaired skeletal strength in diabetes remain to be clarified in details and they are only in part reflected by a variation in bone mineral density. In T2DM, the occurrence of low bone turnover together with a decreased osteoblast activity and compromised bone quality has been shown. Of note, some antidiabetic drugs (e.g., thiazolidinediones, insulin) may deeply affect bone metabolism. In addition, the recently introduced class of incretin-based drugs (i.e., GLP-1 receptor agonists and DPP-4 inhibitors) is expected to exert potentially beneficial effects on bone health, possibly due to a bone anabolic activity of GLP-1, that can be either direct or indirect through the involvement of thyroid C cells. Here we will review the established as well as the putative effects of incretin hormones and of incretin-based drugs on bone metabolism, both in preclinical models and in man, taking into account that such therapeutic strategy may be effective not only to achieve a good glycemic control, but also to improve bone health in diabetic patients

    A MALDI-TOF MS approach for mammalian, human, and formula milks’ profiling

    Get PDF
    Human milk composition is dynamic, and substitute formulae are intended to mimic its protein content. The purpose of this study was to investigate the potentiality of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), followed by multivariate data analyses as a tool to analyze the peptide profiles of mammalian, human, and formula milks. Breast milk samples from women at different lactation stages (2 (n = 5), 30 (n = 6), 60 (n = 5), and 90 (n = 4) days postpartum), and milk from donkeys (n = 4), cows (n = 4), buffaloes (n = 7), goats (n = 4), ewes (n = 5), and camels (n = 2) were collected. Different brands (n = 4) of infant formulae were also analyzed. Protein content (<30 kDa) was analyzed by MS, and data were exported for statistical elaborations. The mass spectra for each milk closely clustered together, whereas different milk samples resulted in well-separated mass spectra. Human samples formed a cluster in which colostrum constituted a well-defined subcluster. None of the milk formulae correlated with animal or human milk, although they were specifically characterized and correlated well with each other. These findings propose MALDI-TOF MS milk profiling as an analytical tool to discriminate, in a blinded way, different milk types. As each formula has a distinct specificity, shifting a baby from one to another formula implies a specific proteomic exposure. These profiles may assist in milk proteomics for easiness of use and minimization of costs, suggesting that the MALDI-TOF MS pipelines may be useful for not only milk adulteration assessments but also for the characterization of banked milk specimens in pediatric clinical settings

    Circulating microRNA (miRNA) expression profiling in plasma of patients with gestational diabetes mellitus reveals upregulation of miRNA miR-330-3p

    Get PDF
    Gestational diabetes mellitus (GDM) is characterized by insulin resistance accompanied by low/absent beta-cell compensatory adaptation to the increased insulin demand. Although the molecular mechanisms and factors acting on beta-cell compensatory response during pregnancy have been partially elucidated and reported, those inducing an impaired beta-cell compensation and function, thus evolving in GDM, have yet to be fully addressed. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs, which negatively modulate gene expression through their sequence-specific binding to 3'UTR of mRNA target. They have been described as potent modulators of cell survival and proliferation and, furthermore, as orchestrating molecules of beta-cell compensatory response and function in diabetes. Moreover, it has been reported that miRNAs can be actively secreted by cells and found in many biological fluids (e.g., serum/plasma), thus representing both optimal candidate disease biomarkers and mediators of tissues crosstalk(s). Here, we analyzed the expression profiles of circulating miRNAs in plasma samples obtained from n = 21 GDM patients and from n = 10 non-diabetic control pregnant women (24-33 weeks of gestation) using TaqMan array microfluidics cards followed by RT-real-time PCR single assay validation. The results highlighted the upregulation of miR-330-3p in plasma of GDM vs non-diabetics. Furthermore, the analysis of miR-330-3p expression levels revealed a bimodally distributed GDM patients group characterized by high or low circulating miR-330 expression and identified as GDM-miR-330highand GDM-miR-330low. Interestingly, GDM-miR-330highsubgroup retained lower levels of insulinemia, inversely correlated to miR-330-3p expression levels, and a significant higher rate of primary cesarean sections. Finally, miR-330-3p target genes analysis revealed major modulators of beta-cell proliferation and of insulin secretion, such as the experimentally validated genes E2F1 and CDC42 as well as AGT2R2, a gene involved in the differentiation of mature beta-cells. In conclusion, we demonstrated that plasma miR-330-3p could be of help in identifying GDM patients with potential worse gestational diabetes outcome; in GDM, miR-330-3p may directly be transferred from plasma to beta-cells thus modulating key target genes involved in proliferation, differentiation, and insulin secretion

    MicroRNA circolanti come biomarcatori per il diabete mellito di tipo 2: avanzamenti e prospettive future

    Get PDF
    Il diabete mellito di tipo 2 (DMT2) è una malattia metabolica cronica eterogenea in costante aumento. In questa rassegna, al fine di identificare un gruppo di microRNA (miRNA) con potenziale applicazione in clinica come biomarcatori per la diagnosi, prognosi e selezione di terapie personalizzate per i pazienti con DMT2, abbiamo effettuato una ricerca sistematica di letteratura, identificando e selezionando 10 miRNA (miR-126-3p, miR-223-3p, miR-21-5p, miR-15a-5p, miR-24-3p, miR-34a-5p, miR-146a-5p, miR-148a-3p, miR-30d-5p e miR-30c-5p)

    MicroRNAs: markers of β-cell stress and autoimmunity

    Get PDF
    Purpose of review We discuss current knowledge about microRNAs (miRNAs) in type 1 diabetes (T1D), an autoimmune disease leading to severe loss of pancreatic β-cells. We describe: The role of cellular miRNAs in regulating immune functions and pathways impacting insulin secretion and β-cell survival; circulating miRNAs as disease biomarkers. Recent findings Studies examined miRNAs in experimental models and patients, including analysis of tissues from organ donors, peripheral blood cells, and circulating miRNAs in serum, plasma, and exosomes. Studies employed diverse designs and methodologies to detect miRNAs and measure their levels. Selected miRNAs have been linked to the regulation of key biological pathways and disease pathogenesis; several circulating miRNAs are associated with having T1D, islet autoimmunity, disease progression, and immune and metabolic functions, for example, C-peptide secretion, in multiple studies. Summary A growing literature reveals multiple roles of miRNAs in T1D, provide new clues into the regulation of disease mechanisms, and identify reproducible associations. Yet challenges remain, and the field will benefit from joint efforts to analyze results, compare methodologies, formally test the robustness of miRNA associations, and ultimately move towards validating robust miRNA biomarkers. Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved

    MicroRNA expression analysis of in vitro dedifferentiated human pancreatic islet cells reveals the activation of the pluripotency-related microRNA cluster miR-302s

    Get PDF
    β-cell dedifferentiation has been recently suggested as an additional mechanism contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted in the generation of an undifferentiated cell population. Additional evidence from in vitro human β-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from β-cells, thus representing a potential in vitro model of β-cell dedifferentiation. Here, we report the microRNA expression profiles analysis of in vitro dedifferentiated islet cells in comparison to mature human native pancreatic islets. We identified 13 microRNAs upregulated and 110 downregulated in islet cells upon in vitro dedifferentiation. Interestingly, among upregulated microRNAs, we observed the activation of microRNA miR-302s cluster, previously defined as pluripotency-associated. Bioinformatic analysis indicated that miR-302s are predicted to target several genes involved in the control of β-cell/epithelial phenotype maintenance; accordingly, such genes were downregulated upon human islet in vitro dedifferentiation. Moreover, we uncovered that cell-cell contacts are needed to maintain low/null expression levels of miR-302. In conclusion, we showed that miR-302 microRNA cluster genes are involved in in vitro dedifferentiation of human pancreatic islet cells and inhibits the expression of multiple genes involved in the maintenance of β-cell mature phenotype
    • …
    corecore