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Purpose of review

We discuss current knowledge about microRNAs (miRNAs) in type 1 diabetes (T1D), an autoimmune
disease leading to severe loss of pancreatic b-cells. We describe: the role of cellular miRNAs in regulating
immune functions and pathways impacting insulin secretion and b-cell survival; circulating miRNAs as
disease biomarkers.

Recent findings

Studies examined miRNAs in experimental models and patients, including analysis of tissues from organ
donors, peripheral blood cells, and circulating miRNAs in serum, plasma, and exosomes. Studies
employed diverse designs and methodologies to detect miRNAs and measure their levels. Selected miRNAs
have been linked to the regulation of key biological pathways and disease pathogenesis; several
circulating miRNAs are associated with having T1D, islet autoimmunity, disease progression, and immune
and metabolic functions, for example, C-peptide secretion, in multiple studies.

Summary

A growing literature reveals multiple roles of miRNAs in T1D, provide new clues into the regulation of
disease mechanisms, and identify reproducible associations. Yet challenges remain, and the field will
benefit from joint efforts to analyze results, compare methodologies, formally test the robustness of miRNA
associations, and ultimately move towards validating robust miRNA biomarkers.
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INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune
disease leading to severe loss of pancreatic b-cells.
Cells of the innate and adaptive immune systems
invade pancreatic islets giving rise to the inflamma-
tory lesion termed insulitis [1] leading to impaired b-
cell function and survival; ultimately, autoreactive
lymphocytes cause immune-mediated b-cell
destruction [2]. Autoantibodies to islet autoantigens
are robust diagnostic and predictive biomarkers [3].
In prospective studies of nondiabetic relatives, pos-
itivity for multiple autoantibodies confers high risk
of T1D but do not predict time to onset [4–7]. Other
biomarkers include risk alleles, mRNA profiles [8,9],
immune cellular markers (autoreactive T cells, reg-
ulatory T cells, phenotypes, etc.), markers of b-cell
destruction (for example, levels of de-methylated
insulin gene DNA) [10,11], and metabolic testing
[oral glucose tolerance test (OGTT)] [6,7,12]. Yet
there is an unmet need for additional biomarkers
that, by themselves or in combination, can improve
rs Kluwer Health, Inc. All rights rese
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prediction [13]. This review will discuss emerging
data about the role of cellular microRNAs (miRNAs)
in regulating immune functions and pathways
impacting insulin secretion and b-cell survival,
and emerging knowledge about circulating miRNAs
as disease biomarkers.
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KEY POINTS

� MiRNAs regulate genes involved in pancreas
development, b-cell function, insulin secretion,
inflammation, and immunity, which are pathways
relevant to T1D.

� Multiple studies of circulating miRNAs report
associations with overlapping miRNAs, indicating some
level of replication, and that these miRNAs have
potential as biomarkers.

� Collaborative approaches for study design, sample
exchange, and standardization, and further replication
of results in multiple cohorts are needed for the
validation of robust biomarkers.

� Certain miRNAs may be enriched in secretory vesicles,
such as exosomes; the identification of b-cell-derived
exosomes would empower noninvasive studies (liquid
biopsy) of circulating miRNAs to directly monitor b-cell
dysfunction and possibly death, which would be critical
for assessing progression of islet autoimmunity and
disease prevention.

� The identification of b-cell-derived exosomes is a
research priority, and could be transformative, as it
would empower noninvasive studies (liquid biopsy) of
circulating miRNAs to directly monitor b-cell dysfunction
and possibly death, and as such become critical for
assessing progression of islet autoimmunity and
disease prevention.
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Cop
MICRORNAS AS REGULATORS OF GENE
EXPRESSION AND BIOMARKERS

miRNAs are small, noncoding RNAs that regulate
gene expression [14]. At present, 2,717 human,
validated miRNAs are listed on miRBase.org. miRNA
regulation involves degradation and suppression of
a target mRNA, upon miRNA binding to comple-
mentary sequences in the 30 UTR of its target mRNA
[15]. miRNA expression profiles vary in different
cells, are modulated by various signals, and each
miRNA may have several hundred mRNA targets
[16]; genes encoding for miRNAs undergo epigenetic
regulation [17]. Although miRNAs play a fundamen-
tal role in physiology by regulating virtually every
biological pathway, growing literature has associ-
ated miRNAs with human diseases. miRNAs exist in
biological fluids, including serum and plasma,
where they are complexed with ribonucleoproteins
and resistant to degradation [18,19]. miRNAs are
also packaged in secretory microvesicles, such as
exosomes [20,21], which mediate genetic exchange
among cells [22]. Circulating miRNAs might reflect
ongoing biological responses and could be exploited
as disease biomarkers, informing about disease state,
2 www.co-endocrinology.com
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progression, prognosis, and response to therapy
[23,24].
ROLE OF CELLULAR MICRORNAS IN
REGULATING IMMUNE AND B-CELL
FUNCTIONS IN TYPE 1 DIABETES

miRNAs regulate several b-cell functions, including
insulin secretion, responses to environmental,
inflammatory, and immune stressors, as well as
development, differentiation, and survival [25–
28]. Mice with b-cell-specific knockout of Dicer,
the enzyme that is critical to miRNA biosynthesis,
exhibit altered islet morphology, decreased b-cell
mass, defective insulin production and secretion
[29,30]. miRNA levels in pancreatic islets change
during physiologic conditions [31] because of
increased metabolic demand [32] or as consequence
of a pathologic process.

Roggli et al. [33] investigated miRNAs in b-cell
function and survival under inflammatory condi-
tions. Unbiased microarray profiling of an insulin-
secreting cell line treated with proinflammatory
cytokines revealed increased levels of miR-21-5p,
miR-34a, and miR-146a-5p. These miRNAs were
also upregulated in freshly isolated human islets
treated with IL-1b and in islets from prediabetic
non-obese diabetic (NOD) mice (8–13 weeks of
age), a model of autoimmune diabetes [34]. Inhibi-
tion of miR-34a and miR-146a-5p protected b-cells
from cytokine-induced death [33]. MiR-21-5p was
associated with b-cell failure [33,35] and death via
the inhibition of the anti-apoptotic BCL2 [36]; miR-
21-5p also targets PDCD4, which promotes cells
death via proapoptotic Bax proteins; thus, miR-
21-5p may also promote b-cell resistance to death
and protect from autoimmune diabetes by suppress-
ing PDCD4 [37]. MiR-21-5p is linked to multiple
autoimmune diseases [38–44]; it modulates T-cell
activation [45] and differentiation, including Th17
differentiation [46–51], and miR-21-5p levels were
higher in effector and memory T-cells compared
with naı̈ve T-cells [52]. MiR-21 has been shown
to function as positive, indirect regulator of FOXP3
in Treg cells [53]. Thus, miR-21-5p may also play
a role in modulating T1D-associated immune
responses.

The miR-29a/b/c cluster was also upregulated
during progression of islet autoimmunity in NOD
mice. MiR-29a, as well as several others, were upre-
gulated in human islets exposed to Coxsackie B virus
[54], noting that enteroviruses are considered envi-
ronmental triggers in T1D [55–57]. Increased levels
of miR-29 family members in b-cells decreased insu-
lin mRNA content, decreased glucose-stimulated
insulin secretion (GSIS) and contributed to
Volume 25 � Number 00 � Month 2018
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cytokine-induced apoptosis by downregulating the
anti-apoptotic protein Mcl1 [58].

miRNA expression profiling of human islets
reported 22 downregulated and 35 upregulated miR-
NAs following exposure to IL-1b and IFNg. Three
downregulated miRNAs: miR-23a-3p, miR-23b-3p,
and miR-149-5p, modulate b-cell apoptosis and the
Bcl-2 pro-apoptotic proteins DP-5 and PUMA [59

&

].
Collectively, these studies show that inflammatory
signals observed in T1D can lead to b-cell dysfunc-
tion and death through the modulation of certain
miRNAs.

Not all miRNA expression profiles, however,
observed in freshly isolated NOD prediabetic islets
could be reproduced in vitro by cytokines exposure,
suggesting that ex-vivo profiles include the contri-
bution of infiltrating immune cells; moreover, inter-
actions between endocrine and immune cells may
modulate miRNA expression. Consistent with this
notion, Guay et al. [60] reported that exposure of
islet cells to T-cell exosomes led to increased levels of
miR-142-3p, miR-142-5p, miR-155, and to b-cell
apoptosis; in vivo blocking of these miRNAs in b-
cells of pre-diabetic NOD mice decreased T1D inci-
dence and was accompanied by reduced islet inflam-
mation and T-cell recruitment [60]. This observation
potentially uncovers a key role for infiltrating T-cell
exosomes in delivering miRNAs to b-cells, which
may trigger apoptosis.

miRNAs also regulate key functions of the
immune system in multiple cell types [61–64],
including lymphocytes and regulatory T (Treg) cells
[62,65,66]. For example, miR-155 is linked to key
immunological functions [52,62,67,68], and its
expression in Tregs depends on the Treg-specific
transcription factor Foxp3 [69]. MiR-155 down-reg-
ulates SOCS1, relieving inhibition on the IL-2-
dependent Stat5 activation. Thus, miRNAs play a
key role in Treg function and IL-2/IL-2R signalling,
which are both linked to T1D [70,71]. MiR-146a-5p
is required for the suppressive function of Treg cells
[72]. Researchers investigated the function of
miRNA expression levels in Treg and conventional
T-cells in patients’ peripheral blood and, since the
advent of the JDRF Network for Pancreatic Organ
Donors with Diabetes (nPOD) [73], in pancreas tis-
sue and pancreatic lymph nodes (PLNs) from organ
donors with T1D. Treg cells from the PLNs of T1D
patients, but not peripheral blood, had impaired in-
vitro suppressive capability compared with nondia-
betic donors [74]. This defect was associated with
miR-125a-5p upregulation in PLN Treg cells from
T1D donors and a reduction in the chemokine
receptor CCR2, suggesting that Treg migration to
infiltrated islets may be impaired in patients [75

&

]. In
contrast, islet-reactive effector T-cells circulate in
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both patients and healthy individuals but only
home to the pancreas in patients [76]. These studies
highlight the importance of assessing miRNAs in
immune cells, in the context of the target organ.

Studies examined miRNAs in circulating T-cells
from T1D patients and in at-risk, autoantibody-pos-
itive relatives. Naı̈ve Tregs from autoantibody-posi-
tive individuals displayed two differentially
expressed miRNAs, let-7c, and miR-15a; 32 miRNAs
were dysregulated in naı̈ve CD4þ T-cells, potentially
paving the way for altered miRNA expression in
effector memory T-cells in T1D [77]. Serr et al.
reported upregulation of the miR-181a/NFAT axis
in CD4þ T-cells from children at an early stage of
islet autoimmunity; elevated miR-181a activity
increased TCR signal strength and co-stimulation
expression links NFAT expression to decreased Treg
cell function in vitro [78

&

]; these alterations may be
associated with impaired immune tolerance and
activation of autoimmunity. The same group
reported an enrichment of insulin-specific
CXCR5þCD4þ T-follicular helper (TFH) precursors
(a subset essential for induction of high-affinity
antibodies), which was correlated with high miR-
92a abundance during onset of autoimmunity;
kruppel-like factor 2 (KLF2) was a target of miR-
92a in TFH precursors. Moreover, miR-92a inhibi-
tion blocked TFH induction and reduced islet auto-
immunity in NOD mice [79]. Autoreactive T-cells
from patients expressed increased levels of miR-98,
miR-23b, and miR-590-5p and conversely had
reduced expression of their target genes TRAIL,
TRAIL-R2, FAS, and FASLG; as these are members
of the extrinsic apoptosis pathway, these findings
support a role for miRNAs in repressing pro-apopto-
tic pathways, which may in turn promote unre-
stricted expansion of diabetogenic cytotoxic T-
cells [80]. Thus, studies of peripheral blood immune
subsets can help understanding the impact of miR-
NAs on the regulation of islet autoimmunity and
disease progression, a heterogeneous process pro-
ceeding at different rates in individuals.

miRNAs have been linked to the regulation of
the expression of b-cell autoantigens, such as islet
antigen (IA)-2, IA-2b, and glutamate decarboxylase
(GAD65); these are modulated by the imprinted
14q32 miRNA cluster in MIN6 cells and mouse islets
[81]. Levels of miRNAs involved in autoantigen
regulation increased in high glucose conditions
[81,82].

Collectively, these findings identify multiple
miRNA-regulated pathways in immune cells and b

cells, and that miRNA regulation may also involve
the transfer of miRNAs via exosomes. Thus, miRNAs
are involved in the cross-talk between islet cells and
immune cells during the development of T1D [83].
rved. www.co-endocrinology.com 3
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CIRCULATING MICORNAS AS TYPE 1
DIABETES BIOMARKERS
Circulating miRNAs may reflect ongoing disease
processes (autoimmunity, b-cell death and dysfunc-
tion, viral infections) and could improve prediction.
Investigators are seeking: miRNAs or miRNA pro-
files, which predict the triggering of islet autoim-
munity, before autoantibody conversion, for
primary prevention; miRNAs associated with disease
progression, to enhance stratification by risk cate-
gories and predicted time to diagnosis in prevention
trials; miRNAs predicting C-peptide decline after
diagnosis [84], to advance stratification and effi-
ciency of clinical trial design.

Several studies explored associations of circulat-
ing miRNAs in T1D patients; we discuss 11 pub-
lished studies relevant to disease pathogenesis,
disease risk, and C-peptide decline. Seven studies
examined cohorts of newly diagnosed patients and
two examined patients with long disease duration
yet claimed a link to pathogenesis; three studies
examined autoantibody-positive relatives at
increased T1D risk. These investigations differed
in sample types examined (serum, plasma, serum-
derived exosomes), molecular methods used to assay
miRNAs (PCR-based, sequencing, etc.), number and
which miRNAs were assayed (ranging from 1 to
2,083), data normalization, and statistical analysis
approaches. Details of these studies and a list of 31
miRNAs identified in at least two studies are
reported in Table 1. Three miRNAs were associated
with T1D in five studies (miR-24-3p, miR-375, miR-
25-3p), one in four studies (miR-148a-3p), five in
three studies (miR-21-5p, miR-93-5p, miR-146a-5p,
miR-29a-3p, miR-21-3p), and twenty-two in two
studies (Table 1). We discuss here nine miRNAs
associated with T1D in at least three studies.
Table 2 lists major pathways impacted by these
miRNAs.

MiR-375 regulates insulin secretion [102], exo-
cytosis [101], pancreas development [104,111],
and in the maintenance of a-cell and b-cell phe-
notypes [105]. Although not exclusively expressed
in b-cells, miR-375 levels are increased following
acute b-cell loss in experimental animals [112].
It is not clear whether miR-375 is a robust bio-
marker of chronic, low-level b-cell destruction as
seen during the course of islet autoimmunity;
so far miR-375 was not detected at increased levels
in three studies of prediabetic individuals
[90,93

&

,94
&

], yet it was increased in three of seven
studies of patients with recent onset T1D
[88,92

&&

,95
&&

] and two studies of patients with
longstanding diabetes [86,89].

MiR-24-3p levels were higher in patients than
controls in three studies (two of new onset patients)
4 www.co-endocrinology.com
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and reduced in a small study of eight patients with
recently diagnosed T1D [94

&

]; miR-24-3p was also a
predictor of future C-peptide decline after diagnosis
[92

&&

]. MiR-148a-3p was upregulated in the serum of
T1D patients in three studies [85,87,89] and in
autoantibody-positive relatives carrying high-risk
HLA types [94

&

]. Both miR-24-3p and miR-148a-3p
modulate insulin biosynthesis [98].

MiR-25-3p was upregulated in patients in three
studies [68,74,75

&

] and downregulated in one [94
&

],
but it was also upregulated in autoantibody-positive
prediabetic individuals compared with their auto-
antibody-negative siblings [93

&

]; it correlated with
C-peptide levels and residual b-cell function at diag-
nosis [69]; miR-25-3p reportedly suppresses the
translation of the insulin gene mRNA [98] and mod-
ulates apoptosis [100].

Other miRNAs consistently upregulated in
patients with T1D and/or prediabetic individuals
were miR-21-3p, miR-21-5p, and 29a-3p. MiR-21-
3p serum levels were increased in relatives with
multiple autoantibodies who progressed to diabetes
compared with those who had not yet been diag-
nosed [93

&

], and in recent onset patients [95
&&

]; a
well-defined target of miR-21-3p is the histone
deacetylase-8 mRNA [105], belonging to a class of
deacetylases with allelic variants linked to T1D risk
[112]; deacetylases are associated with inflammatory
responses, insulin resistance, and b-cell failure, espe-
cially in response to IL-1ß [113].

The molecular associations of miR-21-5p with
T1D were already discussed; miR-21-5p levels are
reduced in PBMCs from T1D patients [114] but
elevated in serum [89,85]. Lakhter et al. [95

&&

]
reported elevated levels of miR-21-5p in serum-
derived exosomes but not in serum from T1D
patients, and elevated circulating levels of miR-21-
3p. The enrichment of miR-21-5p in exosomes sug-
gests that for some miRNAs, exosome purification
may be required to detect differences; examining
exosomes may also inform about the biology of
circulating miRNAs.

Another miRNA of interest is miR-29a-3p: its
levels were increased in relation to diabetes progres-
sion in relatives with autoantibodies [93

&

]. The
expression of miR-29a-3p is three-fold higher in
human b cells compared with a cells [115]; diabetes
develops in miR-29a-3p-deficient mice following
unfolded protein stress responses [109]. Elevated
glucose increases miR-29a-3p levels in rat and
human islets [116]; overexpression of miR-29 miR-
NAs in islet cells impairs glucose-stimulated insulin
secretion, via decreased expression of the transcrip-
tion factor Onecut2 and elevated granuphilin, an
inhibitor of b-cell exocytosis [58], through the tar-
geting of Syntaxyn-1a, one of the two t-SNAREs
Volume 25 � Number 00 � Month 2018
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Table 2. Biological pathways and experimentally validated gene targets of nine microRNAs most reproducibly associated with

type-1 diabetes

Biological pathways Validated targets References

miR-24-3p Cell proliferation, insulin synthesis,
lipotoxicity

Men1, Sox6, NeuroD1, HNFa [96–98]

miR-25-3p Suppression of INS mRNA translation,
activation of apoptosis related to
oxidative stress pathways through
suppression of the mitochondrial calcium
uniport (MCU)

INS, MCU [99,100]

miR-375 Insulin synthesis, exocytosis, cellular growth
and proliferation, pancreas development,
maintenance of a-cell and b-cell
phenotypes

Mtpn1, Cadmn1, Rasd1, Eafle1,
Rgd16, Cav1, Id3, HuD

[101–105]

miR-148a-3p Insulin synthesis Sox6 [98]

miR-146a-5p Cytokine-induced cell death, suppressive
function of Treg cells

[33]

miR-21-5p b-cell apoptosis, T-cell activation and
differentiation, modulation of Foxp3 in
Treg cells

BCL2, Pdcd4 [33,37]

miR-21-3p Insulin resistance, inflammation, b-cell failure
in response to cytokines

Hdac8 [106]

miR-29a-3p Glucose-stimulated insulin secretion,
exocytosis, apoptosis

Onecut2, STX1a, Mct1, Mcl1 [33,107–109]

miR-93-5p Insulin resistance throguh modulation of
Glut4

Glut4 [110]

Diabetes and the endocrine pancreas II

Cop
receptors [soluble NSF (N-ethylmaleimide sensitive
fusion proteins) Attachment Protein Receptor]
involved in insulin exocytosis [107]. MiR-29a-3p
(and miR-29b-3p) also modulate insulin secretion
by targeting the SLC16A1 mRNA in b cells, encoding
for the monocarboxylate transporter-1 (MCT1)
[108]. Mir-29a-3p also promotes apoptosis via sup-
pression of the anti-apoptotic Mcl1 (myeloid cell
leukemia sequence 1) [58]. MiR-29a-3p (miR-29b-
3p, miR-29c-3p) levels were elevated in NOD islets
during diabetes progression and are upregulated in
isolated mouse and human islets following exposure
to inflammatory cytokines [58,35]. Thus, the ele-
vated levels of miR-29a-3p in autoantibody-positive
relatives may reflect islet inflammation and
impaired insulin secretion as disease progresses; this
is also as suggested by the reported inverse correla-
tion with OGTT C-peptide values [93

&

]. Moreover,
both miR-21-3p and miR-29a-3p levels increase in
human islet cells following infection with the
enterovirus Coxsackie B5 strain [54]; future studies
should investigate whether the increased levels of
circulating miR-21-3p and miR-29a-3p in autoanti-
body-positive relatives may potentially reflect viral
infections in the pancreas. Finally, miR-93-5p was
differentially expressed in three studies in compari-
son of T1D patients and controls; it was upregulated
6 www.co-endocrinology.com

yright © 2018 Wolters Kluwer Health, Inc. Unauth
in two studies [91,87] and downregulated in the
other study [94

&

]. Not only MiR-93-5p but also
miR-21a-5p and miR-29a-3p, reportedly regulate
the levels of the glucose transporter GLUT4 in mus-
cle and adipose tissue [110,117], and could be
involved in insulin resistance.

Overall, studies are independently identifying
associations with selected circulating miRNAs;
importantly, several have been linked to biological
pathways involved in b-cell function, inflamma-
tion, and T1D.
CONCLUSION

miRNAs regulate genes involved in pancreas devel-
opment, b-cell function, insulin secretion, inflam-
mation, and immunity, and several miRNAs are
dysregulated in T1D. Studies have identified associ-
ations with overlapping, circulating miRNAs; these
are potential biomarkers, despite different study
populations, study design, biological fluids exam-
ined, and molecular methods used for purification
and detection. Future collaborative studies should
involve sample exchange and assay standardization,
and achieve further replication in multiple cohorts,
which is critical for the validation of robust
biomarkers.
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20. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular
interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev
Biol 2014; 30:255–289.

21. Conigliaro A, Fontana S, Raimondo S, Alessandro R. Exosomes: nanocar-
riers of biological messages. Adv Exp Med Biol 2017; 998:23–43.

22. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs
and microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol 2007; 9:654–659.

23. Backes C, Meese E, Keller A. Specific miRNA disease biomarkers in blood,
serum and plasma: challenges and prospects. Mol Diagn Ther 2016;
20:509–518.

24. Wang J, Chen J, Sen S. Microrna as biomarkers and diagnostics. J Cell
Physiol 2016; 231:25–30.

25. Filios SR, Shalev A. b-cell microRNAs: small but powerful. Diabetes 2015;
64:3631–3644.

26. Calderari S, Diawara M, Garaud A, Gauguier D. Biological roles of micro-
RNAs in the control of insulin secretion and action. Physiol Genomics 2017;
49:1–10.

27. Motterle A, Sanchez-Parra C, Regazzi R. Role of long non-coding RNAs in the
determination of b-cell identity. Diabetes Obes Metab 2016; 18(Suppl
1):41–50.

28. Singer RA, Arnes L, Sussel L. Noncoding RNAs in b cell biology. Curr Opin
Endocrinol Diabetes Obes 2015; 22:77–85.

29. Kalis M, Bolmeson C, Esguerra JLS, et al. Beta-cell specific deletion of
Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One
2011; 6:e29166.

30. Mandelbaum AD, Melkman-Zehavi T, Oren R, et al. Dysregulation of Dicer1 in
beta cells impairs islet architecture and glucose metabolism. Exp Diabetes
Res 2012; 6:470302.

31. Tugay K, Guay C, Marques AC, et al. Role of microRNAs in the age-
associated decline of pancreatic beta cell function in rat islets. Diabetologia
2016; 59:161–169.

32. Jacovetti C, Abderrahmani A, Parnaud G, et al. MicroRNAs contribute to
compensatory b cell expansion during pregnancy and obesity. J Clin Invest
2012; 122:3541–3551.

33. Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the
cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-
cells. Diabetes 2010; 59:978–986.

34. Chaparro RJ, Dilorenzo TP. An update on the use of NOD mice to study
autoimmune (Type 1) diabetes. Expert Rev Clin Immunol 2010; 6:939–955.

35. Bravo-Egana V, Rosero S, Klein D, et al. Inflammation-mediated regulation of
MicroRNA expression in transplanted pancreatic islets. J Transplant 2012;
(2012):723614.

36. Sims EK, Lakhter AJ, Anderson-Baucum E, et al. MicroRNA 21 targets BCL2
mRNA to increase apoptosis in rat and human beta cells. Diabetologia 2017;
60:1057–1065.

37. Ruan Q, Wang T, Kameswaran V, et al. The microRNA-21-PDCD4 axis
prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl
Acad Sci U S A 2011; 108:12030–12035.

38. Wang S, Wan X, Ruan Q. The microRNA-21 in autoimmune diseases. Int J
Mol Sci 2016; 17:864.

39. Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a
contribute to DNA hypomethylation in lupus CD4þ T cells by directly
and indirectly targeting DNA methyltransferase 1. J Immunol 2010;
184:6773–6781.

40. Stagakis E, Bertsias G, Verginis P, et al. Identification of novel microRNA
signatures linked to human lupus disease activity and pathogenesis: miR-21
regulates aberrant T cell responses through regulation of PDCD4 expres-
sion. Ann Rheum Dis 2011; 70:1496–1506.

41. Fenoglio C, Cantoni C, De Riz M, et al. Expression and genetic analysis of
miRNAs involved in CD4þ cell activation in patients with multiple sclerosis.
Neurosci Lett 2011; 504:9–12.

42. Meisgen F, Xu N, Wei T, et al. MiR-21 is up-regulated in psoriasis and
suppresses T cell apoptosis. Exp Dermatol 2012; 21:312–314.

43. Killeen ME, Ferris L, Kupetsky EA, et al. Signaling through purinergic
receptors for ATP induces human cutaneous innate and adaptive Th17
responses: implications in the pathogenesis of psoriasis. J Immunol 2013;
190:4324–4336.

44. Dong L, Wang X, Tan J, et al. Decreased expression of microRNA-21
correlates with the imbalance of Th17 and Treg cells in patients with
rheumatoid arthritis. J Cell Mol Med 2014; 18:2213–2224.

45. Wang L, He L, Zhang R, et al. Regulation of T lymphocyte activation by
microRNA-21. Mol Immunol 2014; 59:163–171.

46. Salaun B, Yamamoto T, Badran B, et al. Differentiation associated regulation
of microRNA expression in vivo in human CD8þ T cell subsets. J Transl Med
2011; 9:44.

47. Smigielska-Czepiel K, van den Berg A, Jellema P, et al. Dual role of miR-21 in
CD4þ T-cells: activation-induced miR-21 supports survival of memory T-
cells and regulates CCR7 expression in naive T-cells. PLoS One 2013;
8:e76217.
rved. www.co-endocrinology.com 7

uthorized reproduction of this article is prohibited.



CE: Tripti; MED/250409; Total nos of Pages: 9;

MED 250409

Diabetes and the endocrine pancreas II

Cop
48. Kroesen BJ, Teteloshvili N, Smigielska-Czepiel K, et al. Immuno-miRs: critical
regulators of T-cell development, function and ageing. Immunology 2015;
144:1–10.

49. Murugaiyan G, da Cunha AP, Ajay AK, et al. MicroRNA-21 promotes Th17
differentiation and mediates experimental autoimmune encephalomyelitis. J
Clin Invest 2015; 125:1069–1080.

50. Honardoost MA, Naghavian R, Ahmadinejad F, et al. Integrative computational
mRNA-miRNA interaction analyses of the autoimmune-deregulated miRNAs
and well-known Th17 differentiation regulators: an attempt to discover new
potential miRNAs involved in Th17 differentiation. Gene 2015; 572:153–162.

51. Teteloshvili N, Kluiver J, van der Geest KSM, et al. Age-associated differ-
ences in MiRNA signatures are restricted to CD45RO negative T cells and
are associated with changes in the cellular composition, activation and
cellular ageing. PLoS One 2015; 10:e0137556.

52. Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naı̈ve, effector and
memory CD8 T cells. PLoS One 2007; 2:e1020.

53. Rouas R, Fayyad-Kazan H, El Zein N, et al. Human natural Treg microRNA
signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur
J Immunol 2009; 39:1608–1618.

54. Kim KW, Ho A, Alshabee-Akil A, et al. Coxsackievirus B5 infection induces
dysregulation of microRNAs predicted to target known type 1 diabetes risk
genes in human pancreatic islets. Diabetes 2016; 65:996–1003.

55. Dotta F, Censini S, van Halteren AGS, et al. Coxsackie B4 virus infection of
beta cells and natural killer cell insulitis in recent-onset type 1 diabetic
patients. Proc Natl Acad Sci U S A 2007; 104:5115–5120.
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