874 research outputs found

    Information-theory-based solution of the inverse problem in classical statistical mechanics

    Full text link
    We present a procedure for the determination of the interaction potential from the knowledge of the radial pair distribution function. The method, realized inside an inverse Monte Carlo simulation scheme, is based on the application of the Maximum Entropy Principle of information theory and the interaction potential emerges as the asymptotic expression of the transition probability. Results obtained for high density monoatomic fluids are very satisfactory and provide an accurate extraction of the potential, despite a modest computational effort.Comment: 9 pages, 2 figure

    Chemistry and fluxes of major and trace element from worldwide passive degassing volcanoes: a critical review

    Get PDF
    Volcanic emissions represent one of the most important natural sources of trace elements (e.g. As, Cd, Cu, Hg, Pb, Sb, Tl and Zn) into the atmosphere, sequentially influencing the hydrosphere, lithosphere and biosphere. The human health hazard during episodic volcanic eruptions generally follows from deposition of coarse and fine particles (2.5-10 and < 2.5 μm) that produces effects such as asthma and lung and respiratory disease. Regarding passive degassing volcanoes, the harmful effects of fluorine fumigation are known both for vegetation (foliar necrosis) and human/animals (fluorosis), but only a few studies have been focused on the effects of potentially toxic trace elements. From a review published work on the metal output from active worldwide volcanoes, 52 publications (the first dating back to the 70’s) were identified, 13 of which on Etna and the others from some of the world most active volcanoes: Mt. St. Helens, Stromboli, Vulcano, Erebus, Merapi, White Island, Kilauea, Popocatepetl, Galeras,Indonesian arc, Satasuma and Masaya. In general, the review shows that available information is scarce and incomplete. We compiled a database both for concentrations and fluxes of 59 chemical elements (major and trace), which allowed us to constrain the compositional and output range. In this study we also present unpublished results from Etna (Italy), Turrialba (Costa Rica), Nyiragongo (Democratic Republic of Congo), Mutnovsky and Gorely (Kamchatka), Aso Asama and Oyama (Japan). Concentrations of major and trace elements were obtained by direct sampling of volcanic gases and aerosols on filters. Sulfur and halogens were collected by using filter-packs methodology, and analyzed by ion chromatography. Untreated filters for particulate were acid digested and analyzed by ICP-OES and ICP-MS. Sulfur to trace element ratios were related to sulfur fluxes to indirectly estimate elemental fluxes. Etna confirms to be one of the greatest point sources in the world. Nyiragongo results to be an additional large source of metals to the atmosphere, especially considering its persistent state of degassing from the lava lake. Turrialba and Gorely also have high emission rates of trace metals considering the global range. Only Mutnovsky volcano show values which are sometimes lower than the range obtained from the review, consistent with its dormant (fumarolic) stage of activity. The accurate estimation of individual and global volcanic emissions of trace metals is still affected by a high level of uncertainty. The latter depends on the large variability in the emission of the different volcanoes, and on their changing stage of activity. Moreover, only few of the potential sources in the world have been directly measured. This preliminary work highlights the need to expand the current dataset including many other active volcanoes for better constraining the global volcanic trace metal fluxes

    High diversity of methanotrophic bacteria in geothermal soils affected by high methane fluxes

    Get PDF
    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas 25 times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils act as source, but also as biological filter for methane release to the atmosphere. For long time, volcanic/geothermal soils has been considered inhospitable for methanotrophic microorganisms, but new extremophile methanotrophs belonging to Verrucomicrobia were identified in three different areas (Pozzuoli, Italy; Hell’s Gate, New Zealand; Kamchatka, Russia), explaining anomalous behaviours in methane leakages of several geothermal/volcanic sites. Our aim was to increase the knowledge of the relationship between methane emissions from volcanic/geothermal areas and biological methane oxidation, by investigating a geothermal site of Pantelleria island (Italy). Pantelleria Island hosts a high enthalpy geothermal system characterized by high temperature, high CH4 and very low H2S fluxes. Such characteristics are reflected in potentially great supply of methane for methanotrophs and scarce presence of inhibitors of their activity (H2S and NH3) in the Pantelleria soils. Potential methanotrophic activity within these soils was already evidenced by the CH4/CO2 ratio of the flux measurements which was lower than that of the respective fumarolic manifestations indicating a loss of CH4 during the gas travel towards the earth’s surface. In this study laboratory incubation experiments using soils sampled at Favara Grande, the main hydrothermal area of Pantelleria, showed very high methane consumption rates (up to 9500 ng CH4 h1 g1). Furthermore, microbiological and culture-independent molecular analyses allowed to detect the presence of methanotrophs affiliated to Gamma- and Alpha-Proteobacteria and to the newly discovered acidothermophilic methanotrophs Verrucomicrobia. Culturable methanotrophic Alpha-proteobacteria of the genus Methylocystis were isolated by enrichment cultures. The isolates showed a wide range of tolerance to pH (3.5 – 8) and temperatures (18 – 45 C), and an average methane oxidation rate of 450 ppm/h. A larger diversity of proteobacterial and verrucomicrobial methanotrophs was detected by the amplification of the methane mono-oxygenase gene pmoA. This study demonstrates the coexistence of both the methanotrophic phyla Verrucomicrobia and Proteobacteria in the same geothermal site. The presence of proteobacterial methanotrophs was quite unexpected because they are generally considered not adapted to live in such harsh environments. Their presence at Favara Grande could be explained by not so low soil pH values (> 5) of this specific geothermal site and by the high methane availability. Such species could have found their niches in the shallowest part of the soils, were the temperatures are not so high, thriving on the abundant upraising methane. Understanding the ecology of methanotrophy in geothermal sites will increase our knowledge of their role in methane emissions to the atmosphere

    Catalogue of the main gas manifestations in the Hellenic territory: a first step towards the estimation of the nationwide geogenic gas output

    Get PDF
    Quantification of gaseous emissions in geological systems is an important branch because it is a major source of greenhouse gas to the atmospheric budget. Of geological environments, there are two different categories: the first category includes emissions of the predominant carbon dioxide (CO2), while the second includes emissions of the predominant methane (CH4). The Hellenic territory has a very complex geodynamic setting deriving from a long and complicated geological history. It is strongly characterized by intense seismic activity and enhanced geothermal gradient. This activity, with the contribution of an active volcanic arc, favours the existence of many cold and thermal gas manifestations. Geogenic sources release huge amounts of gases, which, apart from having important influences on the global climate, could also have a strong impact on human health. Geochemical studies based on the isotopic composition of carbon and hydrogen, along with helium isotopic ratios have become a good indicator of the origin of the gas. The isotopic ratio 13C/12C of CO2 expressed in _ 13C (h, provides important information about the amount of CO2 released from the Earth’s crust or mantle. For methane, carbon and hydrogen isotopic compositions and C1/(C2+C3) hydrocarbon ratios can characterize the origin of methane: biogenic (thermogenic or microbial) or abiogenic. Helium isotopic ratios provide additional information about crustal or mantle origin of the gas. In the present work, a large set of chemical and isotopic data is presented aiming at the identification of areas with geogenic gas emissions and their characterization in terms of different gas composition and origin. The present catalogue should be the base for the estimation total nationwide geogenic CO2 and CH4 fluxes

    Gas manifestations of Greece: Catalogue, geochemical characterization and gas hazard definition

    Get PDF
    Like other geodynamically active areas, Greece is affected by a large number of geogenic gas manifestations. These occur either in form of point sources (fumaroles, mofettes, bubbling gases) or as diffuse emanations. We produced a first catalogue of the geogenic gas manifestations of Greece also considering few literature data. Collected samples were analysed for their chemical (He, Ne, Ar, O2, N2, H2, H2S, CO, CH4 and CO2) and isotopic composition (He, C and N). Most of the sampled gas manifestation are found along the South Aegean active volcanic arc (32 sites) and in the majority they belong to the CO2 dominated group. Very few gas manifestations, N2- or CH4- dominated, are found along the most external units of the Hellenides orogen (Apulia domain - W and SW Greece), where generally compressive or transpersive tectonic prevails. On the contrary, gas manifestations (mainly CO2- dominated) are widespread along northern Greece (28 sites) and along Sperchios basin - north Evia graben (12 sites) which are characterised by extensional tectonic. Geogenic gases, apart from having important influences on the global climate, could have strong impact on human health. Gas hazard is often disregarded because fatal episodes are often not correctly attributed. Geodynamic active areas release geogenic gases for million years over wide areas and the potential risks should not be disregarded. A preliminary estimation of the gas hazard has been made for the last 20 years considering the whole population of Greece. In this period at least 2 fatal episodes with a total of 3 victims could be certainly attributed to CO2. This would give a risk of 1.3·10-8 fatality per annum. Such value, probably underestimated, is much lower than most other natural or anthropogenic risks. Nevertheless this risk, being unevenly distributed along the whole territory, should not be overlooked and better constrained in areas with high density of gas manifestations and high soil gas fluxes

    Methanotrophic activity and diversity of methanotrophs in volcanic-geothermal soils at Pantelleria island (Italy)

    Get PDF
    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are not only a source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 Mg a-1 (t a-1). Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 59.2 nmol g-1 soil d.w. h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer and values >6.23 nmol g-1 h-1 were still detected up to a depth of 13 cm. The highest consumption rate was measured at 37°C, but a still detectable consumption at 80°C (>1.25 nmol g -1 h-1) was recorded. The soil total DNAs extracted from the three samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers, targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs, distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs Verrucomicrobia. Alphaproteobacteria of the genus Methylocystis were isolated from enrichment cultures, under a methane containing atmosphere at 37°C. The isolates grow at a pH range from 3.5 to 8, temperatures of 18 – 45 °C and consume 160 nmol of CH 4 h-1 ml-1 of culture. Soils from Favara Grande showed the largest diversity of methanotrophic bacteria until now detected in a geothermal soil. While methanotrophic Verrucomicrobia are reported to dominate highly acidic geothermal sites, our results suggest that slightly acidic soils, in high enthalpy geothermal systems, host a more diverse group of both culturable and uncultivated methanotrophs

    Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy

    Get PDF
    Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents)

    Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): Part 1 – Major and trace element composition

    Get PDF
    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions
    • …
    corecore