47,192 research outputs found

    Asymptotically Safe Dark Matter

    Get PDF
    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting phenomenology of this "asymptotically safe DM" is quite distinct. One interesting effect of this is to partially offset the low-energy constraints from direct detection experiments without affecting thermal freeze-out processes which occur at higher energies. High-energy collider and indirect annihilation searches are the primary ways to constrain or discover asymptotically safe dark matter.Comment: 5 pages, 2 multi-panel figures, PRD versio

    On the Performance Limits of Pilot-Based Estimation of Bandlimited Frequency-Selective Communication Channels

    Full text link
    In this paper the problem of assessing bounds on the accuracy of pilot-based estimation of a bandlimited frequency selective communication channel is tackled. Mean square error is taken as a figure of merit in channel estimation and a tapped-delay line model is adopted to represent a continuous time channel via a finite number of unknown parameters. This allows to derive some properties of optimal waveforms for channel sounding and closed form Cramer-Rao bounds

    Multigranular scale speech recognition: tehnological and cognitive view

    Get PDF
    We propose a Multigranular Automatic Speech Recognizer. The hypothesis is that speech signal contains information distributed on more different time scales. Many works from various scientific fields ranging from neurobiology to speech technologies, seem to concord on this assumption. In a broad sense, it seems that speech recognition in human is optimal because of a partial parallelization process according to which the left-to-right stream of speech is captured in a multilevel grid in which several linguistic analyses take place contemporarily. Our investigation aims, in this view, to apply these new ideas to the project of more robust and efficient recognizers

    A multi-class approach for ranking graph nodes: models and experiments with incomplete data

    Get PDF
    After the phenomenal success of the PageRank algorithm, many researchers have extended the PageRank approach to ranking graphs with richer structures beside the simple linkage structure. In some scenarios we have to deal with multi-parameters data where each node has additional features and there are relationships between such features. This paper stems from the need of a systematic approach when dealing with multi-parameter data. We propose models and ranking algorithms which can be used with little adjustments for a large variety of networks (bibliographic data, patent data, twitter and social data, healthcare data). In this paper we focus on several aspects which have not been addressed in the literature: (1) we propose different models for ranking multi-parameters data and a class of numerical algorithms for efficiently computing the ranking score of such models, (2) by analyzing the stability and convergence properties of the numerical schemes we tune a fast and stable technique for the ranking problem, (3) we consider the issue of the robustness of our models when data are incomplete. The comparison of the rank on the incomplete data with the rank on the full structure shows that our models compute consistent rankings whose correlation is up to 60% when just 10% of the links of the attributes are maintained suggesting the suitability of our model also when the data are incomplete
    • …
    corecore