485 research outputs found
The potential of recycling wool residues as an amendment for enhancing the physical and hydraulic properties of a sandy loam soil
Climate change and global food demand in coming decades urge effective actions for more efficient uses of water and soil resources. This paper reports the preliminary findings of a study assessing the potential of sheep scoured wool residues (SWRs) as soil amendments to enhance the physical and hydraulic properties of a sandy loam soil under rain conditions. Methods: Two different SWRs were used: scoured residues (white wool, WW) and carbonized scoured residues (black wool, BW) at different SWRs/soil ratios (0.0, 0.5, 1.0 and 2.0%). Soil bulk density (BD), total porosity (TP), aggregates stability, aggregate size distribution, saturated hydraulic conductivity, and water retention properties were determined under rain conditions, in addition to rainwater balance (storage, percolation and runoff). Results: Both WW and BW, particularly at the high wool/soil ratio (2%), significantly reduced soil BD by 11.98% and 9.85%, respectively. Moreover, WW and BW increased TP by 16.45% and 13.57% and available water capacity by 6.5% and 18.1%, respectively. SWRs increased the formation of macro-aggregates and increased aggregate stability. The results of rainwater balance showed higher percolation percentages and less rainwater storage in the wool-treated soil. Conclusions: The increase in water percolation is in line with the increased total porosity and the higher saturated hydraulic conductivity of wool-treated soil. Despite the high capacity of absorbing water, SWRs affected the water movement of the soil more than its water retention
Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles
Colon cancer is one of the leading causes of cancer-related death worldwide and the therapy with 5-fluorouracil (5-FU) is mainly limited due to resistance. Recently, we have demonstrated that nucleolar stress upon 5-FU treatment leads to the activation of ribosome-free rpL3 (L3) as proapoptotic factor. In this study, we analyzed L3 expression profile in colon cancer tissues and demonstrated that L3 mRNA amount decreased with malignant progression and the intensity of its expression was inversely related to tumor grade and Bcl-2/Bax ratio. With the aim to develop a combined therapy of 5-FU plus plasmid encoding L3 (pL3), we firstly assessed the potentiation of the cytotoxic effect of 5-FU on colon cancer cells by L3. Next, 10 μM 5-FU and 2 μg of pL3 were encapsulated in biocompatible nanoparticles (NPs) chemically conjugated with HA to achieve active tumor-targeting ability in CD44 overexpressing cancer cells. We showed the specific intracellular accumulation of NPs in cells and a sustained release for 5-FU and L3. Analysis of cytotoxicity and apoptotic induction potential of combined NPs clearly showed that the 5-FU plus L3 were more effective in inducing apoptosis than 5-FU or L3 alone. Furthermore, we show that the cancer-specific chemosensitizer effect of combined NPs may be dependent on L3 ability to affect 5-FU efflux by controlling P-gp (P-glycoprotein) expression. These results led us to propose a novel combined therapy with the use of 5-FU plus L3 in order to establish individualized therapy by examining L3 profiles in tumors to yield a better clinical outcomes
Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization.
Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-alpha (PKCalpha) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms alpha and delta, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKdelta, but not of DGKalpha expression, was sufficient to prevent the effect of high glucose on PKCalpha activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCalpha activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism
Correction: Biodegradable nanoparticles bearing amine groups as a strategy to alter surface features, biological identity and accumulation in a lung metastasis model
Correction for 'Biodegradable nanoparticles bearing amine groups as a strategy to alter surface features, biological identity and accumulation in a lung metastasis model' by Diletta Esposito et al., J. Mater. Chem. B, 2018, 6, 5922–5930
Biotin-targeted Pluronic® P123/F127 mixed micelles delivering niclosamide: A repositioning strategy to treat drug-resistant lung cancer cells
With the aim to develop alternative therapeutic tools for the treatment of resistant cancers, here we propose targeted Pluronic1 P123/F127 mixed micelles (PMM) delivering niclosamide (NCL) as a repositioning strategy to treat multidrug resistant non-small lung cancer cell lines. To build multifunctional PMM for targeting and imaging, Pluronic1 F127 was conjugated with biotin, while Pluronic1 P123 was fluorescently tagged with rhodamine B, in both cases at one of the two hydroxyl end groups. This design intended to avoid any interference of rhodamine B on biotin exposition on PMM surface, which is a key fundamental for cell trafficking studies. Biotin-decorated PMM were internalized more efficiently than non-targeted PMM in A549 lung cancer cells, while very low internalization was found in NHI3T3 normal fibroblasts. Biotin-decorated PMM entrapped NCL with good efficiency, displayed sustained drug release in protein-rich media and improved cytotoxicity in A549 cells as compared to free NCL (P < 0.01). To go in depth into the actual therapeutic potential of NCL-loaded PMM, a cisplatin-resistant A549 lung cancer cell line (CPr-A549) was developed and its multidrug resistance tested against common chemotherapeutics. Free NCL was able to overcome chemoresistance showing cytotoxic effects in this cell line ascribable to nucleolar stress, which was associated to a significant increase of the ribosomal protein rpL3 and consequent up-regulation of p21. It is noteworthy that biotin- decorated PMM carrying NCL at low doses demonstrated a significantly higher cytotoxicity than free NCL in CPr-A549. These results point at NCL-based regimen with targeted PMM as a possible second-line chemotherapy for lung cancer showing cisplatin or multidrug resistance
Phorbol Esters Induce Intracellular Accumulation of the Anti-apoptotic Protein PED/PEA-15 by Preventing Ubiquitinylation and Proteasomal Degradation
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA)-15 is an anti-apoptotic protein whose expression is increased in several cancer cells and following experimental skin carcinogenesis. Exposure of untransfected C5N keratinocytes and transfected HEK293 cells to phorbol esters (12-O-tetradecanoylphorbol-13-acetate (TPA)) increased PED/PEA-15 cellular content and enhanced its phosphorylation at serine 116 in a time-dependent fashion. Ser-116 --> Gly (PED(S116G)) but not Ser-104 --> Gly (PED(S104G)) substitution almost completely abolished TPA regulation of PED/PEA-15 expression. TPA effect was also prevented by antisense inhibition of protein kinase C (PKC)-zeta and by the expression of a dominant-negative PKC-zeta mutant cDNA in HEK293 cells. Similar to long term TPA treatment, overexpression of wild-type PKC-zeta increased cellular content and phosphorylation of WT-PED/PEA-15 and PED(S104G) but not of PED(S116G). These events were accompanied by the activation of Ca2+-calmodulin kinase (CaMK) II and prevented by the CaMK blocker, KN-93. At variance, the proteasome inhibitor lactacystin mimicked TPA action on PED/PEA-15 intracellular accumulation and reverted the effects of PKC-zeta and CaMK inhibition. Moreover, we show that PED/PEA-15 bound ubiquitin in intact cells. PED/PEA-15 ubiquitinylation was reduced by TPA and PKC-zeta overexpression and increased by KN-93 and PKC-zeta block. Furthermore, in HEK293 cells expressing PED(S116G), TPA failed to prevent ubiquitin-dependent degradation of the protein. Accordingly, in the same cells, TPA-mediated protection from apoptosis was blunted. Taken together, our results indicate that TPA increases PED/PEA-15 expression at the post-translational level by inducing phosphorylation at serine 116 and preventing ubiquitinylation and proteosomal degradation
Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles
Cystic fibrosis (CF) is characterized by an airway obstruction caused by a thick mucus due to a malfunctioning Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The sticky mucus restricts drugs in reaching target cells limiting the efficiency of treatments. The development of new approaches to enhance drug delivery to the lungs represents CF treatment's main challenge. In this work, we report the production and characterization of hybrid core-shell nanoparticles (hNPs) comprising a PLGA core and a dipalmitoylphosphatidylcholine (DPPC) shell engineered for inhalation. We loaded hNPs with a 7-mer peptide nucleic acid (PNA) previously considered for its ability to modulate the post-transcriptional regulation of the CFTR gene. We also investigated the in vitro release kinetics of hNPs and their efficacy in PNA delivery across the human epithelial airway barrier using an ex vivo model based on human primary nasal epithelial cells (HNEC) from CF patients. Confocal analyses and hNPs transport assay demonstrated the ability of hNPs to overcome the mucus barrier and release their PNA cargo within the cytoplasm, where it can exert its biological function
- …