89 research outputs found

    Automatic inspection and analysis of digital waveform images by means of convolutional neural networks

    Get PDF
    AbstractAnalyzing seismic data to get information about earthquakes has always been a major task for seismologists and, more in general, for geophysicists. Recently, thanks to the technological development of observation systems, more and more data are available to perform such tasks. However, this data "grow up" makes "human possibility" of data processing more complex in terms of required efforts and time demanding. That is why new technological approaches such as artificial intelligence are becoming very popular and more and more exploited. In this paper, we explore the possibility of interpreting seismic waveform segments by means of pre-trained deep learning. More specifically, we apply convolutional networks to seismological waveforms recorded at local or regional distances without any pre-elaboration or filtering. We show that such an approach can be very successful in determining if an earthquake is "included" in the seismic wave image and in estimating the distance between the earthquake epicenter and the recording station

    Plasmonic polyaniline/gold nanorods hybrid composites for selective NIR photodetection: Synthesis and characterization

    Get PDF
    Abstract In this study, we present the development of polyaniline/gold nanorod nanocomposites and the effect of the nanorods' aspect ratio and concentration on the overall electrical conductivity of nanocomposite systems. The electrical characterization showed that at the same atomic gold concentration, the conductivity of the nanocomposites increased by about 14% after increasing the gold nanorods' aspect ratio from 2.9 to 3.8. Furthermore, the conductivity of the nanocomposites increases linearly with the concentration of atomic gold, keeping the nanorods' aspect ratio stable, due to increasing the metallic content. The interaction between polyaniline and gold nanorods was investigated by FTIR, micro Raman, and XPS spectroscopic techniques, indicating the delocalization of the charges across the polymer chains induced by the incorporation of the nanorods. The interaction most likely occurs through the imine nitrogen of the polymer's backbone. The homogenous distribution of the gold nanorods in the polyaniline matrix was verified by TEM. Furthermore, the selective photosensitivity of the developed nanocomposites to NIR light was examined, and an increase in their current density was detected when the nanocomposites were irradiated at the wavelength that coincides with the longitudinal plasmonic resonance absorption of the incorporated nanorods. We foresee applications of the developed nanocomposites in numerous optoelectronic sectors

    Photochemical synthesis: Effect of UV irradiation on gold nanorods morphology

    Get PDF
    Abstract Gold nanorods (AuNRs) were synthesized by photochemical method, through irradiation of a reaction solution, containing gold precursor, surfactant and a mild reducing agent to speed up the process. The effects of the irradiation parameters on the morphology of the formed AuNRs were investigated by UV–Vis absorption spectra and transmission electron microscopy. Specifically, the control of the UV irradiance (irradiation power per unit area) and irradiation time allowed the preparation of AuNRs with a wide range of sizes. Increase of the irradiation power leads to the formation of smaller AuNRs, with concomitant decrease of length and diameter. Since both axes show a simultaneous size decrease, the produced AuNRs have increased aspect ratio. Overall we show that application of high UV irradiance for short times favors the synthesis of small AuNRs with increased anisotropy. We propose that the rise of the irradiation power primarily accelerates the reduction of the gold precursor, promoting in such way the formation of smaller seeds. Short irradiation times guard against dissolution effects on the formed nanorods

    Hazelnut extract-loaded nanostructured lipid carriers and evaluation of their antioxidant properties

    Get PDF
    Reactive oxygen species (ROS) are a common hallmark of many degenerative diseases, developing in all those cases where a failure of physiological antioxidant mechanisms occurs (in particular, antioxidant enzymes and the glutathione system), or in case of exposure to an extremely high level of oxidants. In this regard, antioxidant natural extracts are promising compounds as preventive or therapeutic agents against ROS-dependent degenerations. In this study, a deep investigation of hazelnut (Corylus avellana) extract has been performed in terms of mass spectroscopy, evaluation of phenolic content, and antioxidant capacity. Then, nanostructured lipid carriers (NLCs) have been exploited for encapsulation of the hazelnut extracts in order to achieve prolonged bioactivity, increased stability, and targeting through a sustainable delivery approach. The hazelnut extract-loaded NLCs (NE_NLCs) have been deeply characterized for their stability, production yield, and encapsulation efficiency. Moreover, NE_NLCs showed optimal cytocompatibility on human dermal fibroblast (HDF) cells, as well as excellent antioxidant activity, upon pro-oxidant stimulus on HDF cells

    Effect of precursor solution dark incubation on gold nanorods morphology

    Get PDF
    Abstract Gold nanorods were synthesized in an aqueous solution of hexadecyltrimethylammonium bromide via a combination of chemical reduction and UV photoirradiation. Gold ligand complexes, present in the stock solution, are initially reduced, by ascorbic acid as mild reducing agent. The gold ions nucleation and colloid growth proceeds then by subsequent UV irradiation of the so-obtained precursor solution. We present a systematic study of the effect of incubation of the precursor solution on the dispersion state and aspect ratio of the produced nanorods. Incubation of the precursor solution allows the synthesis of higher aspect ratio nanorods with narrower size distribution compared to those obtained without incubation. We propose a mechanism for the gold nanorods formation including two stages, a nucleation and a diffusive growth. This allows us to explain the synthesis improvement as a consequence of the increase in the size of the gold ligand complexes aggregates, leading to a decrease of the nanorods growth rate

    Isolation of a Novel β4 Integrin-binding Protein (p27BBP) Highly Expressed in Epithelial Cells

    Get PDF
    The integrin beta4 has a long cytodomain necessary for hemidesmosome formation. A yeast two-hybrid screen using beta4 cytodomain uncovered a protein called p27(BBP) that represents a beta4 interactor. Both in yeast and in vitro, p27(BBP) binds the two NH2-terminal fibronectin type III modules of beta4, a region required for signaling and hemidesmosome formation. Sequence analysis of p27(BBP) revealed that p27(BBP) was not previously known and has no homology with any isolated mammalian protein, but 85% identical to a yeast gene product of unknown function. Expression studies by Northern analysis and in situ hybridization showed that, in vivo, p27(BBP) mRNA is highly expressed in epithelia and proliferating embryonic epithelial cells. An antibody raised against p27(BBP) COOH-terminal domain showed that all beta4-containing epithelial cell lines expressed p27(BBP). The p27(BBP) protein is insoluble and present in the intermediate filament pool. Furthermore, subcellular fractionation indicated the presence of p27(BBP) both in the cytoplasm and in the nucleus. Confocal analysis of cultured cells showed that part of p27(BBP) immunoreactivity was both nuclear and in the membrane closely apposed to beta4. These results suggest that the p27(BBP) is an in vivo interactor of beta4, possibly linking beta4 to the intermediate filament cytoskeleton

    Three-dimensional optical data storage through multi-photon confocal microscopy and imaging

    Get PDF
    Three dimensional optical data storage is one of the most promising tools to respond to the always growing demand for high data storage capacity. Here, we focused a femtosecond laser source by means of a confocal microscope onto different transparent recording media. The purpose of the study is to probe the capability of the system to independently address different data layers within the storage medium achieving thus three dimensional data storage. We demonstrated the possibility to write superposed independent layers of data due to either multiphoton excitation or to local optical breakdown and the performances observed in the different types of media used are compared

    Photochromic Polymer Gratings

    Get PDF
    In this Full Paper, the possibility of reversibly changing the diffraction efficiency of gratings, fabricated by soft molding lithography on polymer films, containing photochromic molecules, is demonstrated. In particular, alternating UV and visible laser irradiation of the gratings causes the doped photochromic molecules to undergo transformations, which induce reversible dimensional changes to the samples. As a result, reversible changes are monitored in the intensity of the beams of a diode laser, transmitted and diffracted from the gratings. These changes affect the diffraction efficiency, which is increased upon irradiation with UV and decreased after irradiation with visible laser light. Such gratings are promising candidates for the fabrication of modern optical components such as optical switching devices

    Direct Transformation of Edible Vegetable Waste into Bioplastics

    Get PDF
    Bioplastics with a wide range of mechanical properties were directly obtained from industrially processed edible vegetable and cereal wastes. As model systems, we present bioplastics synthesized from wastes of parsley and spinach stems, rice hulls, and cocoa pod husks by digesting in trifluoroacetic acid (TFA), casting, and evaporation. In this way, amorphous cellulose-based plastics are formed. Moreover, many other natural elements present in these plants are carried over into the bioplastics rendering them with many exceptional thermo-physical properties. Here, we show that, due to their broad compatibility with cellulose, amorphous cellulose can be naturally plasticized with these bioplastics by simply mixing during processing. Comparison of their mechanical properties with that of various petroleum based synthetic polymers indicates that these bioplastics have equivalent mechanical properties to the nondegrading ones. This opens up possibilities for replacing some of the nondegrading polymers with the..
    • …
    corecore