23 research outputs found

    Hepatitis C Virus Drives the Unconstrained Monoclonal Expansion of VH1–69-Expressing Memory B Cells in Type II Cryoglobulinemia: A Model of Infection-Driven Lymphomagenesis

    Get PDF
    AbstractChronic hepatitis C virus infection causes B cell lymphoproliferative disorders that include type II mixed cryoglobulinemia and lymphoma. This virus drives the monoclonal expansion and, occasionally, the malignant transformation of B cells producing a polyreactive natural Ab commonly encoded by the VH1–69 variable gene. Owing to their property of producing natural Ab, these cells are reminiscent of murine B-1 and marginal zone B cells. We used anti-Id Abs to track the stages of differentiation and clonal expansion of VH1–69+ cells in patients with type II mixed cryoglobulinemia. By immunophenotyping and cell size analysis, we could define three discrete stages of differentiation of VH1–69+ B cells: naive (small, IgMhighIgDhighCD38+CD27−CD21highCD95−CD5−), "early memory" (medium-sized, IgMhighIgDlowCD38−CD27+CD21lowCD95+CD5+), and "late memory" (large-sized, IgMlowIgDlow-negCD38−CD27lowCD21low-negCD5−CD95−). The B cells expanded in cryoglobulinemia patients have a "memory" phenotype; this fact, together with the evidence for intraclonal variation, suggests that antigenic stimulation by hepatitis C virus causes the unconstrained expansion of activated VH1–69+ B cells. In some cases, these cells replace the entire pool of circulating B cells, although the absolute B cell number remains within normal limits. Absolute monoclonal VH1–69+ B lymphocytosis was seen in three patients with cryoglobulinemia and splenic lymphoma; in two of these patients, expanded cells carried trisomy 3q. The data presented here indicate that the hepatitis C virus-driven clonal expansion of memory B cells producing a VH1–69+ natural Ab escapes control mechanisms and subverts B cell homeostasis. Genetic alterations may provide a further growth advantage leading to an overt lymphoproliferative disorder

    Klebsiella pneumoniae is able to trigger epithelial-mesenchymal transition process in cultured airway epithelial cells

    Get PDF
    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells

    In vivo HPV 16 E5 mRNA: Expression pattern in patients with squamous intra-epithelial lesions of the cervix

    No full text
    Background: Human Papillomavirus (HPV) type 16 E5 is a small protein, which is reported to display transforming activity in vitro and in animal studies. The E5 transcriptional activity, however, has been rarely reported in vivo in literature. Objectives: (a) To detect the E5 transcripts in vivo in a population of HPV 16 positive patients with abnormal cytology and (b) to correlate the level of expression to the degree of the cytological lesion. Study design and methods: 250 cytological samples of HPV positive women were obtained and tested for the E6/E7 mRNA expression. Patients were selected if HPV 16 only mRNA positive and with a cytology consistent with low-grade/high-grade squamous intra-epithelial (LSIL/HSIL) lesions. Selected patients were tested for the E5 transcripts by reverse RT PCR, comparing the expression level in vivo with a transfected HPV 16 E5 HaCaT cell line. Results: 27 HPV 16 E6/E7 mRNA positive LSIL/HSIL patients were selected. 13 out of 17 LSIL patients were tested positive for the E5 mRNA, showing an ample range of positivity. In the HSIL group 7 out of 10 patients were tested positive, displaying lower and more homogeneous levels of expression if compared with the transfected cells. Conclusion: The HPV 16 E5 transcripts levels showed a broad distribution in vivo; the discrepancy was wider in LSIL patients, with HSIL patients displaying a more homogeneous profile. However, because of the limited number of patients, we could not draw a firm conclusion about the correlation between the E5 expression and the disease progression. (C) 2011 Elsevier B. V. All rights reserved

    Expression of HPV16 E5 down-modulates the TGFbeta signaling pathway

    Get PDF
    Background: Infection with high-risk human papillomavirus (HR-HPV) genotypes, mainly HPV16 and HPV18, is a major risk factor for cervical cancer and responsible for its progression. While the transforming role of the HPV E6 and E7 proteins is more characterized, the molecular mechanisms of the oncogenic activity of the E5 product are still only partially understood, but appear to involve deregulation of growth factor receptor expression. Since the signaling of the transforming growth factor beta (TGFbeta) is known to play crucial roles in the epithelial carcinogenesis, aim of this study was to investigate if HPV16 E5 would modulate the TGF-BRII expression and TGFbeta/Smad signaling. Findings: The HPV16 E5 mRNA expression pattern was variable in low-grade squamous intraepithelial lesions (LSIL), while homogeneously reduced in high-grade lesions (HSIL). Parallel analysis of TGFBRII mRNA showed that the receptor transcript levels were also variable in LSILs and inversely related to those of the viral protein. In vitro quantitation of the TGFBRII mRNA and protein in human keratinocytes expressing 16E5 in a dose-dependent and time-dependent manner showed a progressive down-modulation of the receptor. Phosphorylation of Smad2 and nuclear translocation of Smad4 were also decreased in E5-expressing cells stimulated with TGFbeta1.Conclusions: Taken together our results indicate that HPV16 E5 expression is able to attenuate the TGFbeta1/Smad signaling and propose that this loss of signal transduction, leading to destabilization of the epithelial homeostasis at very early stages of viral infection, may represent a crucial mechanism of promotion of the HPV-mediated cervical carcinogenesis. © 2013 French et al.; licensee BioMed Central Ltd

    Molecular Detection of EMT Markers in Circulating Tumor Cells from Metastatic Non-Small Cell Lung Cancer Patients: Potential Role in Clinical Practice

    Get PDF
    Background. Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related mortality; nevertheless, there are few data regarding detection of circulating tumor cells (CTCs) in NSCLC, compared to other kinds of cancers in which their prognostic roles have already been defined. This difference is likely due to detection methods based on the epithelial marker expression which ignore CTCs undergoing epithelial-mesenchymal transition (CTCsEMT). Methods. After optimization of the test with spiking experiments of A549 cells undergoing TGF-β1-induced EMT (A549EMT), the CTCsEMT were enriched by immunomagnetic depletion of leukocytes and then characterized by a RT-PCR assay based on the retrieval of epithelial and EMT-related genes. Blood samples from ten metastatic NSCLC patients before starting treatment and during chemotherapy were used to test this approach by longitudinal monitoring. Ten age- and sex-matched healthy subjects were also enrolled as controls. Results. Recovery experiments of spiked A549EMT cells showed that the RT-PCR assay is a reliable method for detection of CTCsEMT. CTCsEMT were detected in three patients at baseline and in six patients after four cycles of cysplatin-based chemotherapy. Longitudinal monitoring of three patients showed that the CTCsEMT detection is related to poor therapeutic response. Conclusions. The RT-PCR-based approach for the evaluation of CTCsEMT phenotype could be a promising and inexpensive tool to predict the prognosis and the therapeutic response in NSCLC patients

    Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells

    No full text
    Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma

    The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth

    No full text
    Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This 'hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry

    Human Papillomavirus does not have a causal role in colorectal carcinogenesis

    No full text
    AIM: To investigate the presence of human papillomavirus (HPV) DNA along with the integration, the quantification and the expression of the HPV16 in colorectal cancers. METHODS: A prospective series of colorectal tumors were genotyped for HPV DNA. The clinical and pathological variables of the HPV-positive tumors were compared to those of HPV-negative samples. The integration status of HPV16 was evaluated by calculating E2/E6 ng ratios. HPV16-positive tumors were also evaluated for (1) E2, E4, E5, E6 and E7 viral gene ng quantification; (2) relative quantification compared to W12 cells; and (3) viral E2, E4, E5, E6 and E7 mRNA transcripts by real-time polymerase chain reaction. RESULTS: HPV infection was detected in 16.9% of all tumors examined, and HPV16 was the most frequent type detected (63.6% of positive tissues). Notably, the clinical and pathological features of HPV-positive colorectal cancers were not significantly different than those of HPV-negative cancers (χ (2) and t-test for all clinical and pathological features of HPV-positive vs HPV-negative colorectal cancers: p ns). HPV16 DNA was present exclusively in episomal form, and the HPV16 E2, E4, E5, E6 and E7 genes were detected in trace nanogram quantities. Furthermore, the HPV16 genes ranged from 10(-3) to 10(-9) compared to W12 cells at an episomal stage. Although the extractions were validated by housekeeping gene expression, all the HPV16 positive tissues were transcriptionally inactive for the E2, E4, E5, E6 and E7 mRNAs. CONCLUSION: Based on our results, HPV is unlikely involved in colorectal carcinogenesis
    corecore