32 research outputs found

    Cutaneous adverse reactions in B-RAF positive metastatic melanoma following sequential treatment with B-RAF/MEK inhibitors and immune checkpoint blockade or vice versa. A single-institutional case-series

    Get PDF
    Background With the advent of immune-checkpoint inhibitors and targeted treatments (TT), there have been unprecedented response rates and survival in advanced melanoma, but the optimal sequencing of these two treatments modalities is unknown. Combining or sequencing these agents could potentially result in unique toxicities. Cutaneous adverse events (CAE) after sequential exposure to these agents represents one toxicity that needs further description. Methods After retrospectively reviewing charts of patients from 2015 to 2018, we identified six patients who experienced CAEs after recent exposure to sequential immunotherapy and TT or vice versa for the treatment for metastatic melanoma at the University of North Carolina, Chapel Hill. Skin biopsies were available in five patients. Results Five patients received TT after immunotherapy, and one patient received immunotherapy after TT. TT consisted of vemurafenib/cobimetinib (V/C) in five patients with four patients starting V/C immediately before manifesting with a CAE. In patients receiving V/C after immunotherapy, the median time from beginning V/C to development of CAE was 14.5 days. The clinical presentation of diffuse morbilliform rash, fevers, hypotension, and end-organ damage raised concern for Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) syndrome. Histopathological features of lympho-eosinophilic infiltrate were supportive of a drug eruption. Immunotherapy or TT were re-initiated in five patients within 1–8 weeks after resolution of the index CAE. This resulted in two patients re-experiencing the CAE. Both of these patients were off prednisone at the time of therapy re-initiation, whereas none of the patients who were restarted on targeted therapy with a steroid overlap had a rash recurrence. Conclusions Sequential treatment using immunotherapy and TT, especially the sequence of V/C after immunotherapy appears to be the most common trigger for CAE with a median time to onset of approximately 2 weeks. Although the clinical presentation of these CAEs can be dramatic, they respond well to prednisone therapy. This unique presentation suggests that it may be reasonably safe to re-challenge certain patients with a steroid overlap after rash resolution

    Durable response rate as an endpoint in cancer immunotherapy: insights from oncolytic virus clinical trials

    Get PDF
    Abstract Background Traditional response criteria may be insufficient to characterize full clinical benefits of anticancer immunotherapies. Consequently, endpoints such as durable response rate (DRR; a continuous response [complete or partial objective response] beginning within 12 months of treatment and lasting ≥6 months) have been employed. There has not, however, been validation that DRR correlates with other more traditional endpoints of clinical benefit such as overall survival. Methods We evaluated whether DRR was associated with clinically meaningful measures of benefit (eg, overall survival [OS], quality of life [QoL], or treatment-free interval [TFI]) in a phase 3 clinical trial of an oncolytic virus for melanoma treatment. To evaluate the association between DRR and OS and to mitigate lead time bias, landmark analyses were used. QoL was evaluated using the FACT-BRM questionnaire (comprising the FACT-BRM Physical, Social/Family, Emotional, and Functional well-being domains, the Additional Concerns, Physical and Mental treatment-specific subscales, and the Trial Outcome Index [TOI]). TFI was defined as time from the last study therapy dose to first subsequent therapy dose (including any systemic anticancer therapy for melanoma after study therapy discontinuation). Results Four hundred thirty-six patients were included in the intent-to-treat population. Achieving DR was associated with a statistically significant improvement in OS in a landmark analysis at 9 months (HR = 0.07; P = 0.0003), 12 months (HR = 0.05, P < 0.0001), and 18 months (HR = 0.11; P = 0.0002) that persisted after adjusting for disease stage and line of therapy. Achieving a DR was associated with a longer median TFI (HR = 0.33; P = 0.0007) and a higher TOI improvement rate (58.1% versus 30.0%; P = 0.025). Conclusions Achieving a DR was associated with clinical benefits such as improved OS and QoL and prolonged TFI, thus supporting the usefulness of DR as a meaningful immunotherapy clinical trial endpoint. Trial registration ClinicalTrials.gov identifier, NCT00769704 ( https://clinicaltrials.gov/ct2/show/NCT00769704 ) October 7, 200

    Patterns of Clinical Response with Talimogene Laherparepvec (T-VEC) in Patients with Melanoma Treated in the OPTiM Phase III Clinical Trial

    Get PDF
    PURPOSE: Talimogene laherparepvec (T-VEC) is an oncolytic immunotherapy designed to induce tumor regression of injected lesions through direct lytic effects, and of uninjected lesions through induction of systemic antitumor immunity. In this study, we describe the patterns and time course of response to T-VEC from the phase III OPTiM trial of 436 patients with unresected stages IIIB-IV melanoma. METHODS: Lesion-level response analyses were performed based on the type of lesion (injected or uninjected cutaneous, subcutaneous, or nodal lesions; or visceral lesions [uninjected]), and the best percentage change from baseline of the sum of products of the longest diameters was calculated. Patients randomized to T-VEC (n = 295) who experienced a durable response (continuous partial or complete response for ≥6 months) were evaluated for progression prior to response (PPR), defined as the appearance of a new lesion or >25 % increase in total baseline tumor area. RESULTS: T-VEC resulted in a decrease in size by ≥50 % in 64 % of injected lesions (N = 2116), 34 % of uninjected non-visceral lesions (N = 981), and 15 % of visceral lesions (N = 177). Complete resolution of lesions occurred in 47 % of injected lesions, 22 % of uninjected non-visceral lesions, and 9 % of visceral lesions. Of 48 patients with durable responses, 23 (48 %) experienced PPR, including 14 who developed new lesions only. No difference in overall survival was observed, and median duration of response was not reached in patients with PPR versus those without PPR. CONCLUSIONS: Responses in uninjected lesions provide validation of T-VEC-induced systemic immunotherapeutic effects against melanoma. PPR did not negatively impact the clinical effectiveness of T-VEC

    Use of Susceptibility-Weighted Imaging (SWI) in the Detection of Brain Hemorrhagic Metastases from Breast Cancer and Melanoma

    Get PDF
    SWI has significantly increased our sensitivity in detecting hemorrhagic brain lesions. We sought to explore the prevalence of intra-tumoral hemorrhage as detected by SWI in brain metastases from melanoma and breast cancer

    The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes

    Get PDF
    "Purpose: Gene expression analysis identifies several breast cancer subtypes. We examined the relationship of neoadjuvant chemotherapy response to outcome among these breast cancer subtypes. Experimental Design: We used immunohistochemical profiles [human epidermal growth factor receptor 2–positive (HER2+)/hormone receptor–negative for HER2+/estrogen receptor–negative (ER−), hormone receptor and HER2− for basal-like, hormone receptor–positive for luminal] to subtype a prospectively maintained data set of patients with breast cancer treated with neoadjuvant anthracycline-based (doxorubicin plus cyclophosphamide, AC) chemotherapy. We analyzed each subtype for clinical and pathologic response to neoadjuvant chemotherapy and examined the relationship of response to distant disease–free survival and overall survival. Results: Of the 107 patients tested, 34 (32%) were basal-like, 11 (10%) were HER2+/ER−, and 62 (58%) were luminal. After neoadjuvant AC, 75% received subsequent chemotherapy and all received endocrine therapy if hormone receptor–positive. The chemotherapy regimen and pretreatment stage did not differ by subtype. Clinical response to AC was higher among the HER2+/ER− (70%) and basal-like (85%) than the luminal subtypes (47%; P less than 0.0001). Pathologic complete response occurred in 36% of HER2+/ER−, 27% of basal-like, and 7% of luminal subtypes (P = 0.01). Despite initial chemosensitivity, patients with the basal-like and HER2+/ER− subtypes had worse distant disease–free survival (P = 0.04) and overall survival (P = 0.02) than those with the luminal subtypes. Regardless of subtype, only 2 of 17 patients with pathologic complete response relapsed. The worse outcome among basal-like and HER+/ER− subtypes was due to higher relapse among those with residual disease (P = 0.003). Conclusions: Basal-like and HER2+/ER− subtypes are more sensitive to anthracycline-based neoadjuvant chemotherapy than luminal breast cancers. Patients that had pathologic complete response to chemotherapy had a good prognosis regardless of subtype. The poorer prognosis of basal-like and HER2+/ER− breast cancers could be explained by a higher likelihood of relapse in those patients in whom pathologic complete response was not achieved.

    Phase II Study of Bortezomib and Pegylated Liposomal Doxorubicin in the Treatment of Metastatic Breast Cancer

    Get PDF
    Based on preclinical studies and a phase I trial of the combination of bortezomib and pegylated liposomal doxorubicin (PLD), which both showed activity in breast cancer, we conducted a phase II study of this regimen in patients with metastatic breast cancer

    Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (Abraxane®) on three treatment schedules in patients with solid tumors

    Get PDF
    Albumin-bound paclitaxel, ABI-007 (Abraxane ®), has a different toxicity profile than solvent-based paclitaxel, including a lower rate of severe neutropenia. The combination of ABI-007 and carboplatin may have significant activity in a variety of tumor types including non-small and small cell lung cancer, ovarian cancer, and breast cancer. The purpose of this study was to determine the maximum tolerated dose (MTD) of ABI-007, on three different schedules in combination with carboplatin

    A phase I and pharmacologic study of the combination of bortezomib and pegylated liposomal doxorubicin in patients with refractory solid tumors

    Get PDF
    Pre-clinical studies combining the proteasome inhibitor bortezomib with anthracyclines have shown enhanced anti-tumor activity. We therefore conducted a phase I trial of bortezomib and pegylated liposomal doxorubicin (PLD) in patients with refractory solid tumors

    Patterns of Clinical Response with Talimogene Laherparepvec (T-VEC) in Patients with Melanoma Treated in the OPTiM Phase III Clinical Trial

    Get PDF
    PURPOSE: Talimogene laherparepvec (T-VEC) is an oncolytic immunotherapy designed to induce tumor regression of injected lesions through direct lytic effects, and of uninjected lesions through induction of systemic antitumor immunity. In this study, we describe the patterns and time course of response to T-VEC from the phase III OPTiM trial of 436 patients with unresected stages IIIB–IV melanoma. METHODS: Lesion-level response analyses were performed based on the type of lesion (injected or uninjected cutaneous, subcutaneous, or nodal lesions; or visceral lesions [uninjected]), and the best percentage change from baseline of the sum of products of the longest diameters was calculated. Patients randomized to T-VEC (n = 295) who experienced a durable response (continuous partial or complete response for ≥6 months) were evaluated for progression prior to response (PPR), defined as the appearance of a new lesion or >25 % increase in total baseline tumor area. RESULTS: T-VEC resulted in a decrease in size by ≥50 % in 64 % of injected lesions (N = 2116), 34 % of uninjected non-visceral lesions (N = 981), and 15 % of visceral lesions (N = 177). Complete resolution of lesions occurred in 47 % of injected lesions, 22 % of uninjected non-visceral lesions, and 9 % of visceral lesions. Of 48 patients with durable responses, 23 (48 %) experienced PPR, including 14 who developed new lesions only. No difference in overall survival was observed, and median duration of response was not reached in patients with PPR versus those without PPR. CONCLUSIONS: Responses in uninjected lesions provide validation of T-VEC-induced systemic immunotherapeutic effects against melanoma. PPR did not negatively impact the clinical effectiveness of T-VEC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1245/s10434-016-5286-0) contains supplementary material, which is available to authorized users
    corecore