28 research outputs found

    Volcanology and magma geochemistry of the present day activity: constraints on the feeding system

    Get PDF
    Stromboli volcano is famous in the scientific literature for its persistent state of activity, which began about 1500 years ago and consists of continuous degassing and mild intermittent explosions (normal Strombolian activity). Rare lava emissions and sporadic more violent explosive episodes (paroxysms) also occur. Since its formation, the present-day activity has been dominated by the emission of two basaltic magmas, differing chiefly in their crystal and volatile contents, whose characteristics have remained constant until now. The normal Strombolian activity and lava effusions are fed by a crystal-rich, degassed magma, stored within the uppermost part of the plumbing system, whereas highly vesicular, crystal-poor light-colored pumices are produced during paroxysms testifying to the ascent of volatile-rich magma batches from deeper portions of the magmatic system. Mineralogical, geochemical, and isotopic data, together with data on the volatile contents of magmas, are presented here with the aim of discussing (1) the relationships between the different magma batches erupted at Stromboli, (2) the mechanisms of their crystallization and transfer, (3) the plumbing system and triggering mechanisms of Strombolian eruptions.Unpublished203.5. Geologia e storia dei sistemi vulcanici4.3. TTC - Scenari di pericolosità vulcanicareserve

    Intra-Grain Sr Isotope Evidence for Crystal Recycling and Multiple Magma Reservoirs in the Recent Activity of Stromboli Volcano, Southern Italy

    Get PDF
    Over the last several hundred years, Stromboli has been characterized by steady-state Strombolian activity. The volcanic products are dominated by degassed and highly porphyritic (HP-magma) black scoria bombs, lapilli and lava flows of basaltic shoshonitic composition. Periodically (about one to three events per year), more energetic explosive eruptions also eject light coloured volatile-rich pumices with low phenocryst content (LP-magma) that have more mafic compositions than the HP-magma. An in situ major and trace element and Sr isotope microanalysis study is presented on four samples chosen to characterize the different modes of activity at Stromboli: a lava flow (1985-1986 effusive event), a scoria bomb from the 'normal' present-day activity of Stromboli (April 1984), and a scoria and coeval pumice sample from a recent more explosive eruption (September 1996). Plagioclase (A

    The italian quaternary volcanism

    Get PDF
    The peninsular and insular Italy are punctuated by Quaternary volcanoes and their rocks constitute an important aliquot of the Italian Quaternary sedimentary successions. Also away from volcanoes themselves, volcanic ash layers are a common and frequent feature of the Quaternary records, which provide us with potential relevant stratigraphic and chronological markers at service of a wide array of the Quaternary science issues. In this paper, a broad representation of the Italian volcano logical community has joined to provide an updated comprehensive state of art of the Italian Quaternary volcanism. The eruptive history, style and dynamics and, in some cases, the hazard assessment of about thirty Quaternary volcanoes, from the north ernmost Mt. Amiata, in Tuscany, to the southernmost Pantelleria and Linosa, in Sicily Channel, are here reviewed in the light of the substantial improving of the methodological approaches and the overall knowledge achieved in the last decades in the vol canological field study. We hope that the present review can represent a useful and agile document summarising the knowledege on the Italian volcanism at the service of the Quaternary community operating in central Mediterranean area

    Understanding the collapse-eruption link at Stromboli, Italy: A microanalytical study on the products of the recent Secche di Lazzaro phreatomagmatic activity

    No full text
    The Secche di Lazzaro (SDL) phreatomagmatic activity, with the associated Neostromboli sector collapse, represents the most powerful activity of the last 6 ky at Stromboli. As revealed by its present-day activity, Stromboli is one of the most eruptive volcanoes in Italy, and flank instability, along its NW flank, is a common process. Volcano instability is often dramatised by explosive eruptions, thus it is of crucial importance to understand the linking between volcano collapse and the plumbing system itself. The possible role of pre-eruptive magmatic processes as triggers of explosive eruptions can be mainly preserved by minerals and revealed by petrochemical studies. We studied the juvenile components (scoria and pumice) of the pyroclastic deposits from the SDL phreatomagmatic activity with the aim to understand the eruption-collapse link. The SDL pyroclastic sequence has been investigated in three different outcrops: at Secche di Lazzaro (SDL-SW sequence), at Vallone del Monaco (SDL-S) and along the old path from Stromboli village to the active craters (SDL-N). Juvenile components are KS-shoshonites similar to the most evolved lavas erupted at the end of the Neostromboli potassic period. Our study indicates that the SDL system is strongly heterogeneous and made up by at least two different sequences (SDL-N and SDL-SW/SDL-S) with different textural characteristics of the deposits and composition of the juvenile components. Mineral chemistry data show a variable presence of recycled crystals (antecrysts), possibly deriving from the previous Neostromboli activity (up to 13 ky ago). Whole rocks are characterised by small but significant differences between the SDL-N and the southern samples, pointing out the presence of compositionally different potassic magmas and the crystallization and recycling of slightly different mineral assemblages. A clear isotope heterogeneity has been also found and explained by the presence of 10% minimum of less radiogenic antecrysts, whereas crustal contamination would have only affected the higher Sr-radiogenic residual melt. These data suggest that the SDL phreatomagmatic eruptions were fed by compositionally distinct potassic magmas, which rested and evolved in two shallow magma conduits when the magma-supply ceased in the waning phase of the Neostromboli activity. Our results also rule out the occurrence of new arrivals of refreshing magmas in the SDL feeding system, as well as other internal magma-related causes, as triggers for the SDL explosive eruptions. Accordingly, external collapse-related causes seem effectively more suitable for triggering the SDL phreatomagmatic eruptions by decompression of the magmatic systems. We also suggest the SDL-N and SDL-SW/SDL-S sequences are generated by two respective explosive events, separated in time and/or space. They can be respectively related to multiple failures of Sciara del Fuoco which successively depressurised the SDL-N and the SDL-SW/SDL-S magma conduits
    corecore