2,212 research outputs found

    A survey of UV-excess AGNs in the South Galactic Pole

    Get PDF
    Spectra, position, magnitudes and colors are presented for 485 faint (B<20.5) emission line objects selected with the ultraviolet-excess (UVX) criterion on a area of 24.6 sq. deg in the South Galactic Pole. The objects were selected from the analysis of pixel-to-pixel stacking of COSMOS scans of UKST U, J and R plates. The candidates were observed with the Meudon-ESO Fiber Optics System (MEFOS) at the ESO 3.6m telescope. 429 type 1 AGNs have been identified (373 in the redshift range 0.3<z<2.2). This sample has allowed the measure of a difference on the QSO clustering evolution in comparison with that found for galaxies (La Franca et al 1998). The region is part of the ESO Imaging Survey (EIS) and of the 2dF QSO redshift survey.Comment: 32 pages, 19 figures. To appear on A&AS, revised after minor comment

    Dust from AGBs: relevant factors and modelling uncertainties

    Get PDF
    The dust formation process in the winds of Asymptotic Giant Branch stars is discussed, based on full evolutionary models of stars with mass in the range 11M⊙≤_{\odot} \leqM≤8\leq 8M⊙_{\odot}, and metallicities 0.001<Z<0.0080.001 < Z <0.008. Dust grains are assumed to form in an isotropically expanding wind, by growth of pre--existing seed nuclei. Convection, for what concerns the treatment of convective borders and the efficiency of the schematization adopted, turns out to be the physical ingredient used to calculate the evolutionary sequences with the highest impact on the results obtained. Low--mass stars with M≤3\leq 3M⊙_{\odot} produce carbon type dust with also traces of silicon carbide. The mass of solid carbon formed, fairly independently of metallicity, ranges from a few 10−410^{-4}M⊙_{\odot}, for stars of initial mass 1−1.51-1.5M⊙_{\odot}, to ∼10−2\sim 10^{-2}M⊙_{\odot} for M∼2−2.5\sim 2-2.5M⊙_{\odot}; the size of dust particles is in the range 0.1μ0.1 \mum≤aC≤0.2μ\leq a_C \leq 0.2\mum. On the contrary, the production of silicon carbide (SiC) depends on metallicity. For 10−3≤Z≤8×10−310^{-3} \leq Z \leq 8\times 10^{-3} the size of SiC grains varies in the range 0.05μm<aSiC<0.1μ0.05 \mu {\rm m} < {\rm a_{SiC}} < 0.1 \mum, while the mass of SiC formed is 10−5M⊙<MSiC<10−3M⊙10^{-5}{\rm M}_{\odot} < {\rm M_{SiC}} < 10^{-3}{\rm M}_{\odot}. Models of higher mass experience Hot Bottom Burning, which prevents the formation of carbon stars, and favours the formation of silicates and corundum. In this case the results scale with metallicity, owing to the larger silicon and aluminium contained in higher--Z models. At Z=8×10−38\times 10^{-3} we find that the most massive stars produce dust masses md∼0.01m_d \sim 0.01M⊙_{\odot}, whereas models of smaller mass produce a dust mass ten times smaller. The main component of dust are silicates, although corundum is also formed, in not negligible quantities (∼10−20%\sim 10-20\%).Comment: Paper accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal (2014 January 4
    • …
    corecore