64 research outputs found
In Vivo Eradication of Human BCR/ABL-Positive Leukemia Cells With an ABLKinase Inhibitor
BACKGROUND: The leukemia cells of approximately 95% of patients with chronic myeloid leukemia and 30%-50% of adult patients with acute lymphoblastic leukemia express the Bcr/Abl oncoprotein, which is the product of a fusion gene created by a chromosomal translocation [(9:22) (q34;q11)]. This oncoprotein expresses a constitutive tyrosine kinase activity that is crucial for its cellular transforming activity. In this study, we evaluated the antineoplastic activity of CGP57148B, which is a competitive inhibitor of the Bcr/Abl tyrosine kinase. METHODS: Nude mice were given an injection of the Bcr/Abl-positive human leukemia cell lines KU812 or MC3. Tumor-bearing mice were treated intraperitoneally or orally with CGP57148B according to three different schedules. In vitro drug wash-out experiments and in vivo molecular pharmacokinetic experiments were performed to optimize the in vivo treatment schedule. RESULTS: Treatment schedules administering CGP57148B once or twice per day produced some inhibition of tumor growth, but no tumor-bearing mouse was cured. A single administration of CGP57148B caused substantial (>50%) but short-lived (2-5 hours) inhibition of Bcr/Abl kinase activity. On the basis of the results from in vitro wash-out experiments, 20-21 hours was defined as the duration of continuous exposure needed to block cell proliferation and to induce apoptosis in these two leukemia cell lines. A treatment regimen assuring the continuous block of the Bcr/Abl phosphorylating activity that was administered over an 11-day period cured 87%-100% of treated mice. CONCLUSION: These data indicate that the continuous block of the oncogenic tyrosine kinase of Bcr/Abl protein is needed to produce important biologic effects in viv
Role of α1 Acid Glycoprotein in the In Vivo Resistance of Human BCR-ABL+ Leukemic Cells to the Abl Inhibitor STI571
Background: Chronic myeloid leukemia is caused by a chromosomal translocation that results in an oncogenic fusion protein, Bcr-Abl. Bcr-Abl is a tyrosine kinase whose activity is inhibited by the antineoplastic drug STI571. This drug can cure mice given an injection of human leukemic cells, but treatment ultimately fails in animals that have large tumors when treatment is initiated. We created a mouse model to explore the mechanism of resistance in vivo. Methods: Nude mice were injected with KU812 Bcr-Abl+ human leukemic cells. After 1 day (no evident tumors), 8 days, or 15 days (tumors >1 g), mice were treated with STI571 (160 mg/kg every 8 hours). Cells recovered from relapsing animals were used for in vitro experiments. Statistical tests were two-sided. Results: Tumors regressed initially in all STI571-treated mice, but all mice treated 15 days after injection of tumor cells eventually relapsed. Relapsed animals did not respond to further STI571 treatment, and their Bcr-Abl kinase activity in vivo was not inhibited by STI571, despite high plasma concentrations of the drug. However, tumor cells from resistant animals were sensitive to STI571 in vitro, suggesting that a molecule in the plasma of relapsed animals may inactivate the drug. The plasma protein α1 acid glycoprotein (AGP) bound STI571 at physiologic concentrations in vitro and blocked the ability of STI571 to inhibit Bcr-Abl kinase activity in a dose-dependent manner. Plasma AGP concentrations were strongly associated with tumor load. Erythromycin competed with STI571 for AGP binding. When animals bearing large tumors were treated with STI571 alone or with a combination of STI571 and erythromycin, greater tumor reductions and better long-term tumor-free survival (10 of 12 versus one of 13 at day 180; P<.001) were observed after the combination treatment. Conclusion: AGP in the plasma of relapsed animals binds to STI571, preventing this compound from inhibiting the Bcr/Abl tyrosine kinase. Molecules such as erythromycin that compete with STI571 for binding to AGP may enhance the therapeutic potential of this dru
Characterization of compound 584, an Abl kinase inhibitor with lasting effects
Background: Resistance to imatinib is an important clinical issue in the treatment of Philadelphia chromosomepositive leukemias which is being tackled by the development of new, more potent drugs, such as the dual Src/Abl tyrosine kinase inhibitors dasatinib and bosutinib and the imatinib analog nilotinib. In the current study we describe the design, synthesis and biological properties of an imatinib analog with a chlorine-substituted benzamide, namely compound 584 (cmp-584). Design and Methods: To increase the potency, we rationally designed cmp-584, a compound with enhanced shape complementarity with the kinase domain of Abl. cmp-584 was synthesized and characterized in vitro against a panel of 67 serine/threonine and tyrosine kinases using radioactive and enzyme-linked immunosorbent kinase assays. We studied inhibitory cellular activity using Bcr/Abl-positive human cell lines, murine transfectants in proliferation experiments, and a murine xenotransplanted model. Kinase assays on isolated Bcr/Abl protein were also performed. Finally, we used a wash-out approach on whole cells to study the binding kinetics of the inhibitor. Results: cmp-584 showed potent anti-Abl activity both on recombinant protein (IC50: 8 nM) and in cell-based assays (IC50: 0.1-10 nM). The drug maintained inhibitory activity against platelet-derived growth factor receptors and c-KIT and was also active against Lyn (IC50: 301 nM). No other kinase of the panel was inhibited at nanomolar doses. cmp-584 was 20- to 300-fold more active than imatinib in cells. This superior activity was evident in intact cells, in which full-length Bcr-Abl is present. In vivo experiments confirmed the activity of cmp-584. Wash-out experiments showed that short exposure to the drug impaired cell proliferation and Bcr-Abl phosphorylation for a substantially longer period of time than imatinib. Conclusions: The present results suggest a slower off-rate (dissociation rate) of cmp-584 compared to imatinib as an explanation for the increased cellular activity of the former. ©2008 Ferrata Storti Foundation
4-oxo-N-(4-hydroxyphenyl)retinamide: Two Independent Ways to Kill Cancer Cells
BACKGROUND: The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a polar metabolite of fenretinide (4-HPR) very effective in killing cancer cells of different histotypes, able to inhibit 4-HPR-resistant cell growth and to act synergistically in combination with the parent drug. Unlike 4-HPR and other retinoids, 4-oxo-4-HPR inhibits tubulin polymerization, leading to multipolar spindle formation and mitotic arrest. Here we investigated whether 4-oxo-4-HPR, like 4-HPR, triggered cell death also via reactive oxygen species (ROS) generation and whether its antimicrotubule activity was related to a ROS-dependent mechanism in ovarian (A2780), breast (T47D), cervical (HeLa) and neuroblastoma (SK-N-BE) cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: We provided evidence that 4-oxo-4-HPR, besides acting as an antimicrotubule agent, induced apoptosis through a signaling cascade starting from ROS generation and involving endoplasmic reticulum (ER) stress response, Jun N-terminal Kinase (JNK) activation, and upregulation of the proapoptotic PLAcental Bone morphogenetic protein (PLAB). Through time-course analysis and inhibition of the ROS-related signaling pathway (upstream by vitamin C and downstream by PLAB silencing), we demonstrated that the antimitotic activity of 4-oxo-4-HPR was independent from the oxidative stress induced by the retinoid. In fact, ROS generation occurred earlier than mitotic arrest (within 30 minutes and 2 hours, respectively) and abrogation of the ROS-related signaling pathway did not prevent the 4-oxo-4-HPR-induced mitotic arrest. CONCLUSIONS/SIGNIFICANCE: These data indicate that 4-oxo-4-HPR anticancer activity is due to at least two independent mechanisms and provide an explanation of the ability of 4-oxo-4-HPR to be more potent than the parent drug and to be effective also in 4-HPR-resistant cell lines. In addition, the double mechanism of action could allow 4-oxo-4-HPR to efficiently target tumour and to eventually counteract the development of drug resistance
Effect of Medroxyprogesterone Acetate and of Some Antiinflammatory Agents on Mouse Erythroleukemia Cell Differentiation
The effects of medroxyprogesterone acetate (MPA) on differentiation were examined using mouse erythroleukemia (MEL) cells and compared with those of antiinflammatory agents. MPA at low doses (10−6 - 10−7 M) induced 10–15 % cells to differentiate, whereas high doses (10−4 - 10−5 M) caused a 30 % inhibition of dimethylsulfoxide (DMSO)-induced differentiation. Dexamethasone (10−4 - 10−8 M), a steroid antiinflammatory agent, significantly inhibited (77–70 %) DMSO-induced differentiation, whereas indomethacin, aspirin, flurbiprofen and BW755c (non steroid antiinflammatory agents) at the same concentrations had no effect. If added 24 h before DMSO, the inhibitory effects of MPA and dexamethasone increased to 65 % and 95 %, respectively, whereas indomethacin (10−5 M) caused only a 30 % inhibition and the other drugs were inactive. None of these antiinflammatory agents affected differentiation when used without DMSO. MPA and dexamethasone inhibitory effects on DMSO-induced differentiation did not seem to be mediated through the inhibition of the synthesis of prostaglandins, since non-steroid prostaglandin inhibitors were slighly active only when added 24 h before DMSO. </jats:p
- …
