7 research outputs found

    Etching of Surfactant from Solution-Processed, Type-Separated Carbon Nanotubes and Impact on Device Behavior

    No full text
    Semiconducting single-walled carbon nanotubes (SWCNTs) have great potential for use in electronic and optoelectronic devices. However, methods for synthesizing SWCNTs produce a mixture of metallic and semiconducting materials, which require additional processing to separate by electronic type. Purification and enrichment of the semiconducting fraction is readily achieved by using the centrifugation of aqueous suspensions of SWCNTs with the help of surfactants, but this leaves residual surfactant on the SWCNT surface that can impact their electronic and optical properties. Here, we present a detailed study of the sodium taurodeoxycholate (STDC) surfactant removal process during vacuum annealing, showing that it occurs through fragmentation of the surfactant, and that complete removal requires exceedingly high temperatures, which indicates strong binding to the SWCNTs. We then present an approach based on air oxidation and mild annealing to completely remove the surfactant while maintaining the SWCNT properties. Using this approach, we compare single SWCNT electronic devices with and without STDC and show that, despite the very strong surfactant binding, it does not affect device performance substantially

    Color Detection Using Chromophore-Nanotube Hybrid Devices

    No full text
    We present a nanoscale color detector based on a single-walled carbon nanotube functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrate the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggest that upon photoabsorption, the chromophores isomerize from the ground state trans configuration to the excited state cis configuration, accompanied by a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab<i></i> initio calculations are used to study the chromophore-nanotube hybrids and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments support the notion of dipole changes as the optical detection mechanism

    Functionalization of Single-Wall Carbon Nanotubes with Chromophores of Opposite Internal Dipole Orientation

    No full text
    We report the functionalization of carbon nanotubes with two azobenzene-based chromophores with large internal dipole moments and opposite dipole orientations. The molecules are attached to the nanotubes noncovalently via a pyrene tether. A combination of characterization techniques shows uniform molecular coverage on the nanotubes, with minimal aggregation of excess chromophores on the substrate. The large on/off ratios and the subthreshold swings of the nanotube-based field-effect transistors (FETs) are preserved after functionalization, and different shifts in threshold voltage are observed for each chromophore. Ab initio calculations verify the properties of the synthesized chromophores and indicate very small charge transfer, confirming a strong, noncovalent functionalization

    Figure of Merit for Carbon Nanotube Photothermoelectric Detectors

    No full text
    Carbon nanotubes (CNTs) have emerged as promising materials for visible, infrared, and terahertz photodetectors. Further development of these photodetectors requires a fundamental understanding of the mechanisms that govern their behavior as well as the establishment of figures of merit for technology applications. Recently, a number of CNT detectors have been shown to operate based on the photothermoelectric effect. Here we present a figure of merit for these detectors, which includes the properties of the material and the device. In addition, we use a suite of experimental characterization methods for the thorough analysis of the electrical, thermoelectric, electrothermal, and photothermal properties of the CNT thin-film devices. Our measurements determine the quantities that enter the figure of merit and allow us to establish a path toward future performance improvements

    Photothermoelectric p–n Junction Photodetector with Intrinsic Broadband Polarimetry Based on Macroscopic Carbon Nanotube Films

    No full text
    Light polarization is used in the animal kingdom for communication, navigation, and enhanced scene interpretation and also plays an important role in astronomy, remote sensing, and military applications. To date, there have been few photodetector materials demonstrated to have direct polarization sensitivity, as is usually the case in nature. Here, we report the realization of a carbon-based broadband photodetector, where the polarimetry is intrinsic to the active photodetector material. The detector is based on p–n junctions formed between two macroscopic films of single-wall carbon nanotubes. A responsivity up to ∼1 V/W was observed in these devices, with a broadband spectral response spanning the visible to the mid-infrared. This responsivity is about 35 times larger than previous devices without p–n junctions. A combination of experiment and theory is used to demonstrate the photothermoelectric origin of the responsivity and to discuss the performance attributes of such devices

    Carbon Nanotube Terahertz Detector

    No full text
    Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance

    Superlinear Composition-Dependent Photocurrent in CVD-Grown Monolayer MoS<sub>2(1–<i>x</i>)</sub>Se<sub>2<i>x</i></sub> Alloy Devices

    No full text
    Transition metal dichalcogenides (TMDs) have emerged as a new class of two-dimensional materials that are promising for electronics and photonics. To date, optoelectronic measurements in these materials have shown the conventional behavior expected from photoconductors such as a linear or sublinear dependence of the photocurrent on light intensity. Here, we report the observation of a new regime of operation where the photocurrent depends superlinearly on light intensity. We use spatially resolved photocurrent measurements on devices consisting of CVD-grown monolayers of TMD alloys spanning MoS<sub>2</sub> to MoSe<sub>2</sub> to show the photoconductive nature of the photoresponse, with the photocurrent dominated by recombination and field-induced carrier separation in the channel. Time-dependent photoconductivity measurements show the presence of persistent photoconductivity for the S-rich alloys, while photocurrent measurements at fixed wavelength for devices of different alloy compositions show a systematic decrease of the responsivity with increasing Se content associated with increased linearity of the current–voltage characteristics. A model based on the presence of different types of recombination centers is presented to explain the origin of the superlinear dependence on light intensity, which emerges when the nonequilibrium occupancy of initially empty fast recombination centers becomes comparable to that of slow recombination centers
    corecore