4 research outputs found

    Shape-Tailored Colloidal Molecules Obtained by Self-Assembly of Model Gold Nanoparticles with Flexible Polyelectrolyte

    No full text
    We study for the first time the structure of stable finite size clusters (i.e., colloidal molecules) obtained by self-assembly of cationic gold nanoparticles (i.e., atoms) mediated by a flexible polyanion. We reveal with nondenaturizing techniques a striking structural transition from 1D small chains of 12 gold nanoparticles (AuNPs) with a self-avoiding conformation to 3D fractal clusters of 130 AuNPs with short-range ordering around the charge inversion threshold. Interestingly, these well-defined structures are obtained by simple mixing in water without anisotropic functionalization or external forces. As a preliminary step, we introduce a new synthesis pathway leading to well-defined cationic AuNPs of controllable size that can be dispersed in H<sub>2</sub>O or D<sub>2</sub>O without aggregation and ligands’ self-assemblies. On this occasion, we point for the first time that usual procedures do not enable to eliminate cationic ligands’ self-assemblies that could play an undesired role in AuNPs’ self-assembly through electrostatic interactions

    Metastability of Large Aggregates and Viscosity, and Stability of The Pearl Necklace Conformation After Organic Solvent Treatment Of Aqueous Hydrophobic Polyelectrolyte Solutions

    No full text
    Aggregatesa phenomenon still not understoodas well as the pearl-necklace-like chain conformation in aqueous solutions of hydrophobic polyelectrolytes are addressed here, using treatment by an organic solvent. The second appear to be at equilibrium in water. The first appear to be metastable, and surprisingly associated with higher zero shear viscosity. The hydrophobic polyelectrolyte is poly­(styrene-<i>co</i>-sodium styrenesulfonate) (PSS), and the solution treatment is to first add to water an organic solvent, THF, which is then evaporated and replaced by the same amount of water. To investigate polyelectrolyte solutions as a function of THF treatment, we use small angle neutron scattering in the semidilute regime, viscosimetry in the dilute and semidilute regimes (unentangled), and osmometry in the similar semidilute regime (the contribution of the counterions being dominant). First, the structure, namely, the scattering from all chains, is characterized by a maximum (“polyelectrolyte peak”). Its position, amplitude, and scattered intensity at zero angle depend, at a given sulfonation rate of PSS, on the solvent quality through the added amount of organic solvent (THF). This dependence is very pronounced when the sulfonation rate is low (more hydrophobic polyelectrolyte) and is canceled when the sulfonation rate is high (more hydrophilic polyelectrolyte). Second, the viscosity of the polyelectrolyte solutions decreases with THF treatment for the hydrophobic polyelectrolytes. Third, osmometry shows no noticeable increase of the effective charge with THF treatment. It is proposed that the large scale aggregates, especially in the case of very hydrophobic polyelectrolytes, disappear irreversibly with THF treatment, while the pearl-necklace conformation of the chain remains as in its initial state. Parallel test measurements for a fully hydrophilic polyelectrolyte, poly­(sodium-2-acrylamido-2-methylpropanesulfonate)-<i>co</i>-(acrylamide) (P­(AMAMPS)), at different sulfonation rates, show no evolution of the structure with THF treatment in the aqueous solution. The same behavior is highlighted by viscosimetry
    corecore